AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2018
Augello, Agnese; Infantino, Ignazio; Maniscalco, Umberto; Pilato, Giovanni; Vella, Filippo
Robot Inner Perception Capability through a Soft Somatosensory System Journal Article
In: International Journal of Semantic Computing, vol. 12, no. 1, pp. 59–87, 2018, ISSN: 1793351X.
Abstract | Links | BibTeX | Tags: Anthropomorphic Robots, Cognitive Architectures, Cognitive Model, Human Robot Interaction, Motivation, Sensor systems, Somatosensory Systems
@article{augelloRobotInnerPerception2018,
title = {Robot Inner Perception Capability through a Soft Somatosensory System},
author = { Agnese Augello and Ignazio Infantino and Umberto Maniscalco and Giovanni Pilato and Filippo Vella},
doi = {10.1142/S1793351X18400044},
issn = {1793351X},
year = {2018},
date = {2018-01-01},
journal = {International Journal of Semantic Computing},
volume = {12},
number = {1},
pages = {59--87},
abstract = {The capability of a robot being aware of its internal status is a step forward to the enhancement of human-robot interaction. The possibility of feeling either pleasant or unpleasant sensations is at the basis of the motivation level of a robot. It can modulate the "willingness" of accomplishing a given task. Negative sensations can represent an alarm indicating dangerous situations, while the feeling of a reassuring environment or a well-being sensation can be a stimulus in pursuing the task, even in the presence of a painful perception. In this paper, we illustrate a bio-inspired somatosensory system embedded in a cognitive model for a humanoid robot. The system is based on a set of soft sensors that have been designed in order to make it possible for the interpretation of the robot physical sensations through a proper classification of the perceived somatosensory signals. This interpretation triggers and modulates the motivation level of the robot as well as its behavior. textcopyright 2018 World Scientific Publishing Company.},
keywords = {Anthropomorphic Robots, Cognitive Architectures, Cognitive Model, Human Robot Interaction, Motivation, Sensor systems, Somatosensory Systems},
pubstate = {published},
tppubtype = {article}
}
Augello, Agnese; Infantino, Ignazio; Maniscalco, Umberto; Pilato, Giovanni; Vella, Filippo
Robot inner perception capability through a soft somatosensory system Journal Article
In: International Journal of Semantic Computing, vol. 12, no. 1, pp. 59–87, 2018, ISSN: 1793351X.
Abstract | Links | BibTeX | Tags: Anthropomorphic Robots, Cognitive Architectures, Cognitive Model, Human Robot Interaction, Motivation, Sensor systems, Somatosensory Systems
@article{augello_robot_2018,
title = {Robot inner perception capability through a soft somatosensory system},
author = {Agnese Augello and Ignazio Infantino and Umberto Maniscalco and Giovanni Pilato and Filippo Vella},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051523659&doi=10.1142%2fS1793351X18400044&partnerID=40&md5=c602b9f8638911db3433de9acd74ea75},
doi = {10.1142/S1793351X18400044},
issn = {1793351X},
year = {2018},
date = {2018-01-01},
journal = {International Journal of Semantic Computing},
volume = {12},
number = {1},
pages = {59–87},
abstract = {The capability of a robot being aware of its internal status is a step forward to the enhancement of human-robot interaction. The possibility of feeling either pleasant or unpleasant sensations is at the basis of the motivation level of a robot. It can modulate the "willingness" of accomplishing a given task. Negative sensations can represent an alarm indicating dangerous situations, while the feeling of a reassuring environment or a well-being sensation can be a stimulus in pursuing the task, even in the presence of a painful perception. In this paper, we illustrate a bio-inspired somatosensory system embedded in a cognitive model for a humanoid robot. The system is based on a set of soft sensors that have been designed in order to make it possible for the interpretation of the robot physical sensations through a proper classification of the perceived somatosensory signals. This interpretation triggers and modulates the motivation level of the robot as well as its behavior. © 2018 World Scientific Publishing Company.},
keywords = {Anthropomorphic Robots, Cognitive Architectures, Cognitive Model, Human Robot Interaction, Motivation, Sensor systems, Somatosensory Systems},
pubstate = {published},
tppubtype = {article}
}