AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Hassoulas, A.; Crawford, O.; Hemrom, S.; Almeida, A.; Coffey, M. J.; Hodgson, M.; Leveridge, B.; Karwa, D.; Lethbridge, A.; Williams, H.; Voisey, A.; Reed, K.; Patel, S.; Hart, K.; Shaw, H.
A pilot study investigating the efficacy of technology enhanced case based learning (CBL) in small group teaching Journal Article
In: Scientific Reports, vol. 15, no. 1, 2025, ISSN: 20452322 (ISSN).
Abstract | Links | BibTeX | Tags: coronavirus disease 2019, Covid-19, epidemiology, female, human, Humans, Learning, male, Medical, Medical student, Pilot Projects, pilot study, problem based learning, Problem-Based Learning, procedures, SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2, Students, Teaching, Virtual Reality
@article{hassoulas_pilot_2025,
title = {A pilot study investigating the efficacy of technology enhanced case based learning (CBL) in small group teaching},
author = {A. Hassoulas and O. Crawford and S. Hemrom and A. Almeida and M. J. Coffey and M. Hodgson and B. Leveridge and D. Karwa and A. Lethbridge and H. Williams and A. Voisey and K. Reed and S. Patel and K. Hart and H. Shaw},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105004223025&doi=10.1038%2fs41598-025-99764-5&partnerID=40&md5=8588cac4c3ffe437e667ba4373e010ec},
doi = {10.1038/s41598-025-99764-5},
issn = {20452322 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Scientific Reports},
volume = {15},
number = {1},
abstract = {The recent paradigm shift in teaching provision within higher education, following the COVID-19 pandemic, has led to blended models of learning prevailing in the pedagogic literature and in education practice. This shift has also resulted in an abundance of tools and technologies coming to market. Whilst the value of integrating technology into teaching and assessment has been well-established in the literature, the magnitude of choice available to educators and to students can be overwhelming. The current pilot investigated the feasibility of integrating key technologies in delivering technology-enhanced learning (TEL) case-based learning (CBL) within a sample of year two medical students. The cohort was selected at random, as was the control group receiving conventional CBL. Both groups were matched on prior academic performance. The TEL-CBL group received (1) in-person tutorials delivered within an immersive learning suite, (2) access to 3D anatomy software to explore during their self-directed learning time, (3) virtual reality (VR) guided anatomy exploration during tutorials, (4) access to a generative AI-based simulated virtual patient repository to practice key skills such as communication and history taking, and (5) an immersive medical emergency simulation. Metrics assessed included formative academic performance, student learning experience, and confidence in relation to communication and clinical skills. The results revealed that the TEL-CBL group outperformed their peers in successive formative assessments (p < 0.05), engaged thoroughly with the technologies at their disposal, and reported that these technologies enhanced their learning experience. Furthermore, students reported that access to the GenAI-simulated virtual patient platform and the immersive medical emergency simulation improved their clinical confidence and gave them a useful insight into what they can expect during the clinical phase of their medical education. The results are discussed in relation to the advantages that key emerging technologies may play in enhancing student performance, experience and confidence. © The Author(s) 2025.},
keywords = {coronavirus disease 2019, Covid-19, epidemiology, female, human, Humans, Learning, male, Medical, Medical student, Pilot Projects, pilot study, problem based learning, Problem-Based Learning, procedures, SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2, Students, Teaching, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
The recent paradigm shift in teaching provision within higher education, following the COVID-19 pandemic, has led to blended models of learning prevailing in the pedagogic literature and in education practice. This shift has also resulted in an abundance of tools and technologies coming to market. Whilst the value of integrating technology into teaching and assessment has been well-established in the literature, the magnitude of choice available to educators and to students can be overwhelming. The current pilot investigated the feasibility of integrating key technologies in delivering technology-enhanced learning (TEL) case-based learning (CBL) within a sample of year two medical students. The cohort was selected at random, as was the control group receiving conventional CBL. Both groups were matched on prior academic performance. The TEL-CBL group received (1) in-person tutorials delivered within an immersive learning suite, (2) access to 3D anatomy software to explore during their self-directed learning time, (3) virtual reality (VR) guided anatomy exploration during tutorials, (4) access to a generative AI-based simulated virtual patient repository to practice key skills such as communication and history taking, and (5) an immersive medical emergency simulation. Metrics assessed included formative academic performance, student learning experience, and confidence in relation to communication and clinical skills. The results revealed that the TEL-CBL group outperformed their peers in successive formative assessments (p < 0.05), engaged thoroughly with the technologies at their disposal, and reported that these technologies enhanced their learning experience. Furthermore, students reported that access to the GenAI-simulated virtual patient platform and the immersive medical emergency simulation improved their clinical confidence and gave them a useful insight into what they can expect during the clinical phase of their medical education. The results are discussed in relation to the advantages that key emerging technologies may play in enhancing student performance, experience and confidence. © The Author(s) 2025.