AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Kim, S. J.; Cao, D. D.; Spinola, F.; Lee, S. J.; Cho, K. S.
RoomRecon: High-Quality Textured Room Layout Reconstruction on Mobile Devices Proceedings Article
In: U., Eck; M., Sra; J., Stefanucci; M., Sugimoto; M., Tatzgern; I., Williams (Ed.): Proc. - IEEE Int. Symp. Mixed Augment. Real., ISMAR, pp. 544–553, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833151647-5 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D models, 3D reconstruction, 3d-modeling, AR-assisted image capturing, Architectural design, Augmented Reality, Augmented reality-assisted image capturing, Image capturing, Indoor 3D reconstruction, Indoor space, Mobile application, Mobile Applications, Mortar, Room layout, Texturing, Texturing quality
@inproceedings{kim_roomrecon_2024,
title = {RoomRecon: High-Quality Textured Room Layout Reconstruction on Mobile Devices},
author = {S. J. Kim and D. D. Cao and F. Spinola and S. J. Lee and K. S. Cho},
editor = {Eck U. and Sra M. and Stefanucci J. and Sugimoto M. and Tatzgern M. and Williams I.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213494599&doi=10.1109%2fISMAR62088.2024.00069&partnerID=40&md5=0f6b9d4c44d9c55cafba7ad76651ea07},
doi = {10.1109/ISMAR62088.2024.00069},
isbn = {979-833151647-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Symp. Mixed Augment. Real., ISMAR},
pages = {544–553},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Widespread RGB-Depth (RGB-D) sensors and advanced 3D reconstruction technologies facilitate the capture of indoor spaces, improving the fields of augmented reality (AR), virtual reality (VR), and extended reality (XR). Nevertheless, current technologies still face limitations, such as the inability to reflect minor scene changes without a complete recapture, the lack of semantic scene understanding, and various texturing challenges that affect the 3D model's visual quality. These issues affect the realism required for VR experiences and other applications such as in interior design and real estate. To address these challenges, we introduce RoomRecon, an interactive, real-time scanning and texturing pipeline for 3D room models. We propose a two-phase texturing pipeline that integrates AR-guided image capturing for texturing and generative AI models to improve texturing quality and provide better replicas of indoor spaces. Moreover, we suggest to focus only on permanent room elements such as walls, floors, and ceilings, to allow for easily customizable 3D models. We conduct experiments in a variety of indoor spaces to assess the texturing quality and speed of our method. The quantitative results and user study demonstrate that RoomRecon surpasses state-of-the-art methods in terms of texturing quality and on-device computation time. © 2024 IEEE.},
keywords = {3D modeling, 3D models, 3D reconstruction, 3d-modeling, AR-assisted image capturing, Architectural design, Augmented Reality, Augmented reality-assisted image capturing, Image capturing, Indoor 3D reconstruction, Indoor space, Mobile application, Mobile Applications, Mortar, Room layout, Texturing, Texturing quality},
pubstate = {published},
tppubtype = {inproceedings}
}