AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Si, J.; Yang, S.; Song, J.; Son, S.; Lee, S.; Kim, D.; Kim, S.
Generating and Integrating Diffusion Model-Based Panoramic Views for Virtual Interview Platform Proceedings Article
In: IEEE Int. Conf. Artif. Intell. Eng. Technol., IICAIET, pp. 343–348, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835038969-2 (ISBN).
Abstract | Links | BibTeX | Tags: AI, Deep learning, Diffusion, Diffusion Model, Diffusion technology, Digital elevation model, High quality, Manual process, Model-based OPC, New approaches, Panorama, Panoramic views, Virtual environments, Virtual Interview, Virtual Reality
@inproceedings{si_generating_2024,
title = {Generating and Integrating Diffusion Model-Based Panoramic Views for Virtual Interview Platform},
author = {J. Si and S. Yang and J. Song and S. Son and S. Lee and D. Kim and S. Kim},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85209663031&doi=10.1109%2fIICAIET62352.2024.10730450&partnerID=40&md5=a52689715ec912c54696948c34fc0263},
doi = {10.1109/IICAIET62352.2024.10730450},
isbn = {979-835038969-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {IEEE Int. Conf. Artif. Intell. Eng. Technol., IICAIET},
pages = {343–348},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This paper presents a new approach to improve virtual interview platforms in education, which are gaining significant attention. This study aims to simplify the complex manual process of equipment setup to enhance the realism and reliability of virtual interviews. To this end, this study proposes a method for automatically constructing 3D virtual interview environments using diffusion technology in generative AI. In this research, we exploit a diffusion model capable of generating high-quality panoramic images. We generate images of interview rooms capable of delivering immersive interview experiences via refined text prompts. The resulting imagery is then reconstituted 3D VR content utilizing the Unity engine, facilitating enhanced interaction and engagement within virtual environments. This research compares and analyzes various methods presented in related research and proposes a new process for efficiently constructing 360-degree virtual environments. When wearing Oculus Quest 2 and experiencing the virtual environment created using the proposed method, a high sense of immersion was experienced, similar to the actual interview environment. © 2024 IEEE.},
keywords = {AI, Deep learning, Diffusion, Diffusion Model, Diffusion technology, Digital elevation model, High quality, Manual process, Model-based OPC, New approaches, Panorama, Panoramic views, Virtual environments, Virtual Interview, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
This paper presents a new approach to improve virtual interview platforms in education, which are gaining significant attention. This study aims to simplify the complex manual process of equipment setup to enhance the realism and reliability of virtual interviews. To this end, this study proposes a method for automatically constructing 3D virtual interview environments using diffusion technology in generative AI. In this research, we exploit a diffusion model capable of generating high-quality panoramic images. We generate images of interview rooms capable of delivering immersive interview experiences via refined text prompts. The resulting imagery is then reconstituted 3D VR content utilizing the Unity engine, facilitating enhanced interaction and engagement within virtual environments. This research compares and analyzes various methods presented in related research and proposes a new process for efficiently constructing 360-degree virtual environments. When wearing Oculus Quest 2 and experiencing the virtual environment created using the proposed method, a high sense of immersion was experienced, similar to the actual interview environment. © 2024 IEEE.