AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Li, H.; Wang, Z.; Liang, W.; Wang, Y.
X’s Day: Personality-Driven Virtual Human Behavior Generation Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 3514–3524, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: adult, Augmented Reality, Behavior Generation, Chatbots, Computer graphics, computer interface, Contextual Scene, female, human, Human behaviors, Humans, Long-term behavior, male, Novel task, Personality, Personality traits, Personality-driven Behavior, physiology, Social behavior, User-Computer Interface, Users' experiences, Virtual agent, Virtual environments, Virtual humans, Virtual Reality, Young Adult
@article{li_xs_2025,
title = {X’s Day: Personality-Driven Virtual Human Behavior Generation},
author = {H. Li and Z. Wang and W. Liang and Y. Wang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003864932&doi=10.1109%2fTVCG.2025.3549574&partnerID=40&md5=a865bbd2b0fa964a4f0f4190955dc787},
doi = {10.1109/TVCG.2025.3549574},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {3514–3524},
abstract = {Developing convincing and realistic virtual human behavior is essential for enhancing user experiences in virtual reality (VR) and augmented reality (AR) settings. This paper introduces a novel task focused on generating long-term behaviors for virtual agents, guided by specific personality traits and contextual elements within 3D environments. We present a comprehensive framework capable of autonomously producing daily activities autoregressively. By modeling the intricate connections between personality characteristics and observable activities, we establish a hierarchical structure of Needs, Task, and Activity levels. Integrating a Behavior Planner and a World State module allows for the dynamic sampling of behaviors using large language models (LLMs), ensuring that generated activities remain relevant and responsive to environmental changes. Extensive experiments validate the effectiveness and adaptability of our approach across diverse scenarios. This research makes a significant contribution to the field by establishing a new paradigm for personalized and context-aware interactions with virtual humans, ultimately enhancing user engagement in immersive applications. Our project website is at: https://behavior.agent-x.cn/. © 2025 IEEE. All rights reserved,},
keywords = {adult, Augmented Reality, Behavior Generation, Chatbots, Computer graphics, computer interface, Contextual Scene, female, human, Human behaviors, Humans, Long-term behavior, male, Novel task, Personality, Personality traits, Personality-driven Behavior, physiology, Social behavior, User-Computer Interface, Users' experiences, Virtual agent, Virtual environments, Virtual humans, Virtual Reality, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Linares-Pellicer, J.; Izquierdo-Domenech, J.; Ferri-Molla, I.; Aliaga-Torro, C.
Breaking the Bottleneck: Generative AI as the Solution for XR Content Creation in Education Book Section
In: Lecture Notes in Networks and Systems, vol. 1140, pp. 9–30, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 23673370 (ISSN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Augmented Reality, Breakings, Content creation, Contrastive Learning, Development process, Educational context, Federated learning, Generative adversarial networks, Immersive learning, Intelligence models, Learning experiences, Mixed reality, Resource intensity, Technical skills, Virtual environments
@incollection{linares-pellicer_breaking_2025,
title = {Breaking the Bottleneck: Generative AI as the Solution for XR Content Creation in Education},
author = {J. Linares-Pellicer and J. Izquierdo-Domenech and I. Ferri-Molla and C. Aliaga-Torro},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85212478399&doi=10.1007%2f978-3-031-71530-3_2&partnerID=40&md5=aefee938cd5b8a74ee811a463d7409ae},
doi = {10.1007/978-3-031-71530-3_2},
isbn = {23673370 (ISSN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lecture Notes in Networks and Systems},
volume = {1140},
pages = {9–30},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The integration of Extended Reality (XR) technologies-Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR)-promises to revolutionize education by offering immersive learning experiences. However, the complexity and resource intensity of content creation hinders the adoption of XR in educational contexts. This chapter explores Generative Artificial Intelligence (GenAI) as a solution, highlighting how GenAI models can facilitate the creation of educational XR content. GenAI enables educators to produce engaging XR experiences without needing advanced technical skills by automating aspects of the development process from ideation to deployment. Practical examples demonstrate GenAI’s current capability to generate assets and program applications, significantly lowering the barrier to creating personalized and interactive learning environments. The chapter also addresses challenges related to GenAI’s application in education, including technical limitations and ethical considerations. Ultimately, GenAI’s integration into XR content creation makes immersive educational experiences more accessible and practical, driven by only natural interactions, promising a future where technology-enhanced learning is universally attainable. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {Adversarial machine learning, Augmented Reality, Breakings, Content creation, Contrastive Learning, Development process, Educational context, Federated learning, Generative adversarial networks, Immersive learning, Intelligence models, Learning experiences, Mixed reality, Resource intensity, Technical skills, Virtual environments},
pubstate = {published},
tppubtype = {incollection}
}
Stroinski, M.; Kwarciak, K.; Kowalewski, M.; Hemmerling, D.; Frier, W.; Georgiou, O.
Text-to-Haptics: Enhancing Multisensory Storytelling through Emotionally Congruent Midair Haptics Journal Article
In: Advanced Intelligent Systems, vol. 7, no. 4, 2025, ISSN: 26404567 (ISSN).
Abstract | Links | BibTeX | Tags: Audiovisual, Augmented Reality, Extended reality, Haptic interfaces, Haptics, Haptics interfaces, HMI, hybrid AI, Hybrid artificial intelligences, Metaverses, Mixed reality, Multisensory, Natural Language Processing, perception, Sentiment Analysis, Sound speech, Special issue and section, Speech enhancement, Virtual environments, Visual elements
@article{stroinski_text–haptics_2025,
title = {Text-to-Haptics: Enhancing Multisensory Storytelling through Emotionally Congruent Midair Haptics},
author = {M. Stroinski and K. Kwarciak and M. Kowalewski and D. Hemmerling and W. Frier and O. Georgiou},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002269591&doi=10.1002%2faisy.202400758&partnerID=40&md5=a4c8ce7a01c9bc90d9805a81d34df982},
doi = {10.1002/aisy.202400758},
issn = {26404567 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Advanced Intelligent Systems},
volume = {7},
number = {4},
abstract = {In multisensory storytelling, the integration of touch, sound, speech, and visual elements plays a crucial role in enhancing the narrative immersion and audience engagement. In light of this, this article presents a scalable and intelligent hybrid artificial intelligence (AI) method that uses emotional text analysis for deciding when and what midair haptics to display alongside audiovisual content generated by latent stable diffusion methods. Then, a user study involving 40 participants is described, the results of which suggest that the proposed approach enhances the audience level of engagement as they experience a short AI-generated multisensory (audio–visual–haptic) story. © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH.},
keywords = {Audiovisual, Augmented Reality, Extended reality, Haptic interfaces, Haptics, Haptics interfaces, HMI, hybrid AI, Hybrid artificial intelligences, Metaverses, Mixed reality, Multisensory, Natural Language Processing, perception, Sentiment Analysis, Sound speech, Special issue and section, Speech enhancement, Virtual environments, Visual elements},
pubstate = {published},
tppubtype = {article}
}
Buldu, K. B.; Özdel, S.; Lau, K. H. Carrie; Wang, M.; Saad, D.; Schönborn, S.; Boch, A.; Kasneci, E.; Bozkir, E.
CUIfy the XR: An Open-Source Package to Embed LLM-Powered Conversational Agents in XR Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 192–197, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331521578 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Computational Linguistics, Conversational user interface, conversational user interfaces, Extended reality, Head-mounted-displays, Helmet mounted displays, Language Model, Large language model, large language models, Non-player character, non-player characters, Open source software, Personnel training, Problem oriented languages, Speech models, Speech-based interaction, Text to speech, Unity, Virtual environments, Virtual Reality
@inproceedings{buldu_cuify_2025,
title = {CUIfy the XR: An Open-Source Package to Embed LLM-Powered Conversational Agents in XR},
author = {K. B. Buldu and S. Özdel and K. H. Carrie Lau and M. Wang and D. Saad and S. Schönborn and A. Boch and E. Kasneci and E. Bozkir},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000229165&doi=10.1109%2FAIxVR63409.2025.00037&partnerID=40&md5=f11f49480d075aee04ec44cedc984844},
doi = {10.1109/AIxVR63409.2025.00037},
isbn = {9798331521578 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {192–197},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Recent developments in computer graphics, machine learning, and sensor technologies enable numerous opportunities for extended reality (XR) setups for everyday life, from skills training to entertainment. With large corporations offering affordable consumer-grade head-mounted displays (HMDs), XR will likely become pervasive, and HMDs will develop as personal devices like smartphones and tablets. However, having intelligent spaces and naturalistic interactions in XR is as important as tech-nological advances so that users grow their engagement in virtual and augmented spaces. To this end, large language model (LLM)-powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR. This paper provides the community with an open-source, customizable, extendable, and privacy-aware Unity package, CUIfy, that facili-tates speech-based NPC-user interaction with widely used LLMs, STT, and TTS models. Our package also supports multiple LLM-powered NPCs per environment and minimizes latency between different computational models through streaming to achieve us-able interactions between users and NPCs. We publish our source code in the following repository: https://gitlab.lrz.de/hctl/cuify © 2025 Elsevier B.V., All rights reserved.},
keywords = {Augmented Reality, Computational Linguistics, Conversational user interface, conversational user interfaces, Extended reality, Head-mounted-displays, Helmet mounted displays, Language Model, Large language model, large language models, Non-player character, non-player characters, Open source software, Personnel training, Problem oriented languages, Speech models, Speech-based interaction, Text to speech, Unity, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Liu, G.; Du, H.; Wang, J.; Niyato, D.; Kim, D. I.
Contract-Inspired Contest Theory for Controllable Image Generation in Mobile Edge Metaverse Journal Article
In: IEEE Transactions on Mobile Computing, vol. 24, no. 8, pp. 7389–7405, 2025, ISSN: 15361233 (ISSN), (Publisher: Institute of Electrical and Electronics Engineers Inc.).
Abstract | Links | BibTeX | Tags: Contest Theory, Deep learning, Deep reinforcement learning, Diffusion Model, Generative adversarial networks, Generative AI, High quality, Image generation, Image generations, Immersive technologies, Metaverses, Mobile edge computing, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Semantic data, Virtual addresses, Virtual environments, Virtual Reality
@article{liu_contract-inspired_2025,
title = {Contract-Inspired Contest Theory for Controllable Image Generation in Mobile Edge Metaverse},
author = {G. Liu and H. Du and J. Wang and D. Niyato and D. I. Kim},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000066834&doi=10.1109%2FTMC.2025.3550815&partnerID=40&md5=f95abb0df00e3112fa2c15ee77eb41bc},
doi = {10.1109/TMC.2025.3550815},
issn = {15361233 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Mobile Computing},
volume = {24},
number = {8},
pages = {7389–7405},
abstract = {The rapid advancement of immersive technologies has propelled the development of the Metaverse, where the convergence of virtual and physical realities necessitates the generation of high-quality, photorealistic images to enhance user experience. However, generating these images, especially through Generative Diffusion Models (GDMs), in mobile edge computing environments presents significant challenges due to the limited computing resources of edge devices and the dynamic nature of wireless networks. This paper proposes a novel framework that integrates contract-inspired contest theory, Deep Reinforcement Learning (DRL), and GDMs to optimize image generation in these resource-constrained environments. The framework addresses the critical challenges of resource allocation and semantic data transmission quality by incentivizing edge devices to efficiently transmit high-quality semantic data, which is essential for creating realistic and immersive images. The use of contest and contract theory ensures that edge devices are motivated to allocate resources effectively, while DRL dynamically adjusts to network conditions, optimizing the overall image generation process. Experimental results demonstrate that the proposed approach not only improves the quality of generated images but also achieves superior convergence speed and stability compared to traditional methods. This makes the framework particularly effective for optimizing complex resource allocation tasks in mobile edge Metaverse applications, offering enhanced performance and efficiency in creating immersive virtual environments. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Institute of Electrical and Electronics Engineers Inc.},
keywords = {Contest Theory, Deep learning, Deep reinforcement learning, Diffusion Model, Generative adversarial networks, Generative AI, High quality, Image generation, Image generations, Immersive technologies, Metaverses, Mobile edge computing, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Semantic data, Virtual addresses, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Gatti, E.; Giunchi, D.; Numan, N.; Steed, A.
Around the Virtual Campfire: Early UX Insights into AI-Generated Stories in VR Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 136–141, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331521578 (ISBN).
Abstract | Links | BibTeX | Tags: Generative AI, Images synthesis, Immersive, Interactive Environments, Language Model, Large language model, Storytelling, User input, User study, Users' experiences, Virtual environments, VR
@inproceedings{gatti_around_2025,
title = {Around the Virtual Campfire: Early UX Insights into AI-Generated Stories in VR},
author = {E. Gatti and D. Giunchi and N. Numan and A. Steed},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000263662&doi=10.1109%2FAIxVR63409.2025.00027&partnerID=40&md5=ab95e803af14233db6ed307222632542},
doi = {10.1109/AIxVR63409.2025.00027},
isbn = {9798331521578 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {136–141},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Virtual Reality (VR) presents an immersive platform for storytelling, allowing narratives to unfold in highly engaging, interactive environments. Leveraging AI capabilities and image synthesis offers new possibilities for creating scalable, generative VR content. In this work, we use an LLM-driven VR storytelling platform to explore how AI-generated visuals and narrative elements impact the user experience in VR storytelling. Previously, we presented AIsop, a system to integrate LLM-generated text and images and TTS audio into a storytelling experience, where the narrative unfolds based on user input. In this paper, we present two user studies focusing on how AI-generated visuals influence narrative perception and the overall VR experience. Our findings highlight the positive impact of AI-generated pictorial content on the storytelling experience, highlighting areas for enhancement and further research in interactive narrative design. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Generative AI, Images synthesis, Immersive, Interactive Environments, Language Model, Large language model, Storytelling, User input, User study, Users' experiences, Virtual environments, VR},
pubstate = {published},
tppubtype = {inproceedings}
}
Häfner, P.; Eisenlohr, F.; Karande, A.; Grethler, M.; Mukherjee, A.; Tran, N.
Leveraging Virtual Prototypes for Training Data Collection in LLM-Based Voice User Interface Development for Machines Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 281–285, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331521578 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Behavioral Research, Data collection, Language Model, Large language model, large language models, Model-based OPC, Training data, User interface development, Virtual environments, Virtual Prototype, Virtual Prototyping, Virtual Reality, Voice User Interface, Voice User Interfaces, Wizard of Oz, Wizard-of-Oz Method
@inproceedings{hafner_leveraging_2025,
title = {Leveraging Virtual Prototypes for Training Data Collection in LLM-Based Voice User Interface Development for Machines},
author = {P. Häfner and F. Eisenlohr and A. Karande and M. Grethler and A. Mukherjee and N. Tran},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000344182&doi=10.1109%2FAIxVR63409.2025.00054&partnerID=40&md5=464de1fae1a7a9dbc4362b0a984e0cd4},
doi = {10.1109/AIxVR63409.2025.00054},
isbn = {9798331521578 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {281–285},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Voice User Interfaces (VUIs) are becoming increasingly valuable in industrial applications, offering hands-free control in complex environments. However, developing and validating VUIs for such applications faces challenges, including limited access to physical prototypes and high testing costs. This paper presents a methodology that utilizes virtual reality (VR) prototypes to collect training data for large language model (LLM)-based VUIs, allowing early-stage voice control development before physical prototypes are accessible. Through an immersive Wizard-of-Oz (WoZ) method, participants interact with a virtual reality representation of a machine, generating realistic, scenario-based conversational data. This combined WoZ and VR approach enables high-quality data collection and iterative model training, offering an effective solution that can be applied across various types of machine. Preliminary findings demonstrate the viability of VR in generating diverse and robust data sets that closely simulate real-world dialogs for voice interactions in industrial settings. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Artificial intelligence, Behavioral Research, Data collection, Language Model, Large language model, large language models, Model-based OPC, Training data, User interface development, Virtual environments, Virtual Prototype, Virtual Prototyping, Virtual Reality, Voice User Interface, Voice User Interfaces, Wizard of Oz, Wizard-of-Oz Method},
pubstate = {published},
tppubtype = {inproceedings}
}
Tong, Y.; Qiu, Y.; Li, R.; Qiu, S.; Heng, P. -A.
MS2Mesh-XR: Multi-Modal Sketch-to-Mesh Generation in XR Environments Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 272–276, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331521578 (ISBN).
Abstract | Links | BibTeX | Tags: 3D meshes, 3D object, ControlNet, Hand-drawn sketches, Hands movement, High quality, Image-based, immersive visualization, Mesh generation, Multi-modal, Pipeline codes, Realistic images, Three dimensional computer graphics, Virtual environments, Virtual Reality
@inproceedings{tong_ms2mesh-xr_2025,
title = {MS2Mesh-XR: Multi-Modal Sketch-to-Mesh Generation in XR Environments},
author = {Y. Tong and Y. Qiu and R. Li and S. Qiu and P. -A. Heng},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000423684&doi=10.1109%2FAIxVR63409.2025.00052&partnerID=40&md5=fe9d84b91722dbe8c11d43ffe2f2041d},
doi = {10.1109/AIxVR63409.2025.00052},
isbn = {9798331521578 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {272–276},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {We present MS2Mesh-XR, a novel multimodal sketch-to-mesh generation pipeline that enables users to create realistic 3D objects in extended reality (XR) environments using hand-drawn sketches assisted by voice inputs. In specific, users can intuitively sketch objects using natural hand movements in mid-air within a virtual environment. By integrating voice inputs, we devise ControlNet to infer realistic images based on the drawn sketches and interpreted text prompts. Users can then review and select their preferred image, which is subsequently reconstructed into a detailed 3D mesh using the Convolutional Reconstruction Model. In particular, our proposed pipeline can generate a high-quality 3D mesh in less than 20 seconds, allowing for immersive visualization and manipulation in runtime XR scenes. We demonstrate the practicability of our pipeline through two use cases in XR settings. By leveraging natural user inputs and cutting-edge generative AI capabilities, our approach can significantly facilitate XR-based creative production and enhance user experiences. Our code and demo will be available at: https://yueqiu0911.github.io/MS2Mesh-XR/. © 2025 Elsevier B.V., All rights reserved.},
keywords = {3D meshes, 3D object, ControlNet, Hand-drawn sketches, Hands movement, High quality, Image-based, immersive visualization, Mesh generation, Multi-modal, Pipeline codes, Realistic images, Three dimensional computer graphics, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Tracy, K.; Spantidi, O.
Impact of GPT-Driven Teaching Assistants in VR Learning Environments Journal Article
In: IEEE Transactions on Learning Technologies, vol. 18, pp. 192–205, 2025, ISSN: 19391382 (ISSN), (Publisher: Institute of Electrical and Electronics Engineers Inc.).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Cognitive loads, Computer interaction, Contrastive Learning, Control groups, Experimental groups, Federated learning, Generative AI, Generative artificial intelligence (GenAI), human–computer interaction, Interactive learning environment, interactive learning environments, Learning efficacy, Learning outcome, learning outcomes, Student engagement, Teaching assistants, Virtual environments, Virtual Reality (VR)
@article{tracy_impact_2025,
title = {Impact of GPT-Driven Teaching Assistants in VR Learning Environments},
author = {K. Tracy and O. Spantidi},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001083336&doi=10.1109%2FTLT.2025.3539179&partnerID=40&md5=fc4deb58acaf5bac8f4805ef7035396d},
doi = {10.1109/TLT.2025.3539179},
issn = {19391382 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Learning Technologies},
volume = {18},
pages = {192–205},
abstract = {Virtual reality (VR) has emerged as a transformative educational tool, enabling immersive learning environments that promote student engagement and understanding of complex concepts. However, despite the growing adoption of VR in education, there remains a significant gap in research exploring how generative artificial intelligence (AI), such as generative pretrained transformer can further enhance these experiences by reducing cognitive load and improving learning outcomes. This study examines the impact of an AI-driven instructor assistant in VR classrooms on student engagement, cognitive load, knowledge retention, and performance. A total of 52 participants were divided into two groups experiencing a VR lesson on the bubble sort algorithm, one with only a prescripted virtual instructor (control group), and the other with the addition of an AI instructor assistant (experimental group). Statistical analysis of postlesson quizzes and cognitive load assessments was conducted using independent t-tests and analysis of variance (ANOVA), with the cognitive load being measured through a postexperiment questionnaire. The study results indicate that the experimental group reported significantly higher engagement compared to the control group. While the AI assistant did not significantly improve postlesson assessment scores, it enhanced conceptual knowledge transfer. The experimental group also demonstrated lower intrinsic cognitive load, suggesting the assistant reduced the perceived complexity of the material. Higher germane and general cognitive loads indicated that students were more invested in meaningful learning without feeling overwhelmed. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Institute of Electrical and Electronics Engineers Inc.},
keywords = {Adversarial machine learning, Cognitive loads, Computer interaction, Contrastive Learning, Control groups, Experimental groups, Federated learning, Generative AI, Generative artificial intelligence (GenAI), human–computer interaction, Interactive learning environment, interactive learning environments, Learning efficacy, Learning outcome, learning outcomes, Student engagement, Teaching assistants, Virtual environments, Virtual Reality (VR)},
pubstate = {published},
tppubtype = {article}
}
Casas, L.; Hannah, S.; Mitchell, K.
HoloJig: Interactive Spoken Prompt Specified Generative AI Environments Journal Article
In: IEEE Computer Graphics and Applications, vol. 45, no. 2, pp. 69–77, 2025, ISSN: 02721716 (ISSN); 15581756 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: 3-D rendering, Article, Collaborative workspace, customer experience, Economic and social effects, generative artificial intelligence, human, Immersive, Immersive environment, parallax, Real- time, simulation, Simulation training, speech, Time based, Virtual environments, Virtual Reality, Virtual reality experiences, Virtual spaces, VR systems
@article{casas_holojig_2025,
title = {HoloJig: Interactive Spoken Prompt Specified Generative AI Environments},
author = {L. Casas and S. Hannah and K. Mitchell},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001182100&doi=10.1109%2FMCG.2025.3553780&partnerID=40&md5=9fafa25e4b6ddc9d2fe32d813fbabb20},
doi = {10.1109/MCG.2025.3553780},
issn = {02721716 (ISSN); 15581756 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Computer Graphics and Applications},
volume = {45},
number = {2},
pages = {69–77},
abstract = {HoloJig offers an interactive, speech-to-virtual reality (VR), VR experience that generates diverse environments in real time based on live spoken descriptions. Unlike traditional VR systems that rely on prebuilt assets, HoloJig dynamically creates personalized and immersive virtual spaces with depth-based parallax 3-D rendering, allowing users to define the characteristics of their immersive environment through verbal prompts. This generative approach opens up new possibilities for interactive experiences, including simulations, training, collaborative workspaces, and entertainment. In addition to speech-to-VR environment generation, a key innovation of HoloJig is its progressive visual transition mechanism, which smoothly dissolves between previously generated and newly requested environments, mitigating the delay caused by neural computations. This feature ensures a seamless and continuous user experience, even as new scenes are being rendered on remote servers. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {3-D rendering, Article, Collaborative workspace, customer experience, Economic and social effects, generative artificial intelligence, human, Immersive, Immersive environment, parallax, Real- time, simulation, Simulation training, speech, Time based, Virtual environments, Virtual Reality, Virtual reality experiences, Virtual spaces, VR systems},
pubstate = {published},
tppubtype = {article}
}
Gaglio, G. F.; Vinanzi, S.; Cangelosi, A.; Chella, A.
Intention Reading Architecture for Virtual Agents Proceedings Article
In: O., Palinko; L., Bodenhagen; J.-J., Cabibihan; K., Fischer; S., Šabanović; K., Winkle; L., Behera; S.S., Ge; D., Chrysostomou; W., Jiang; H., He (Ed.): Lect. Notes Comput. Sci., pp. 488–497, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-981963521-4 (ISBN).
Abstract | Links | BibTeX | Tags: Chatbots, Cognitive Architecture, Cognitive Architectures, Computer simulation languages, Intelligent virtual agents, Intention Reading, Intention readings, Language Model, Large language model, Metaverse, Metaverses, Physical robots, Video-games, Virtual agent, Virtual assistants, Virtual contexts, Virtual environments, Virtual machine
@inproceedings{gaglio_intention_2025,
title = {Intention Reading Architecture for Virtual Agents},
author = {G. F. Gaglio and S. Vinanzi and A. Cangelosi and A. Chella},
editor = {Palinko O. and Bodenhagen L. and Cabibihan J.-J. and Fischer K. and Šabanović S. and Winkle K. and Behera L. and Ge S.S. and Chrysostomou D. and Jiang W. and He H.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002042645&doi=10.1007%2f978-981-96-3522-1_41&partnerID=40&md5=70ccc7039785bb4ca4d45752f1d3587f},
doi = {10.1007/978-981-96-3522-1_41},
isbn = {03029743 (ISSN); 978-981963521-4 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15561 LNAI},
pages = {488–497},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {This work presents the development of a virtual agent designed specifically for use in the Metaverse, video games, and other virtual environments, capable of performing intention reading on a human-controlled avatar through a cognitive architecture that endows it with contextual awareness. The paper explores the adaptation of a cognitive architecture, originally developed for physical robots, to a fully virtual context, where it is integrated with a Large Language Model to create highly communicative virtual assistants. Although this work primarily focuses on virtual applications, integrating cognitive architectures with LLMs marks a significant step toward creating collaborative artificial agents capable of providing meaningful support by deeply understanding context and user intentions in digital environments. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.},
keywords = {Chatbots, Cognitive Architecture, Cognitive Architectures, Computer simulation languages, Intelligent virtual agents, Intention Reading, Intention readings, Language Model, Large language model, Metaverse, Metaverses, Physical robots, Video-games, Virtual agent, Virtual assistants, Virtual contexts, Virtual environments, Virtual machine},
pubstate = {published},
tppubtype = {inproceedings}
}
Chen, J.; Grubert, J.; Kristensson, P. O.
Analyzing Multimodal Interaction Strategies for LLM-Assisted Manipulation of 3D Scenes Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR, pp. 206–216, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331536459 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D reconstruction, 3D scene editing, 3D scenes, Computer simulation languages, Editing systems, Immersive environment, Interaction pattern, Interaction strategy, Language Model, Large language model, large language models, Multimodal Interaction, Scene editing, Three dimensional computer graphics, Virtual environments, Virtual Reality
@inproceedings{chen_analyzing_2025,
title = {Analyzing Multimodal Interaction Strategies for LLM-Assisted Manipulation of 3D Scenes},
author = {J. Chen and J. Grubert and P. O. Kristensson},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002716635&doi=10.1109%2FVR59515.2025.00045&partnerID=40&md5=9db6769cd401503605578c4b711152b9},
doi = {10.1109/VR59515.2025.00045},
isbn = {9798331536459 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR},
pages = {206–216},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {As more applications of large language models (LLMs) for 3D content in immersive environments emerge, it is crucial to study user behavior to identify interaction patterns and potential barriers to guide the future design of immersive content creation and editing systems which involve LLMs. In an empirical user study with 12 participants, we combine quantitative usage data with post-experience questionnaire feedback to reveal common interaction patterns and key barriers in LLM-assisted 3D scene editing systems. We identify opportunities for improving natural language interfaces in 3D design tools and propose design recommendations. Through an empirical study, we demonstrate that LLM-assisted interactive systems can be used productively in immersive environments. © 2025 Elsevier B.V., All rights reserved.},
keywords = {3D modeling, 3D reconstruction, 3D scene editing, 3D scenes, Computer simulation languages, Editing systems, Immersive environment, Interaction pattern, Interaction strategy, Language Model, Large language model, large language models, Multimodal Interaction, Scene editing, Three dimensional computer graphics, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Li, Y.; Pang, E. C. H.; Ng, C. S. Y.; Azim, M.; Leung, H.
Enhancing Linear Algebra Education with AI-Generated Content in the CityU Metaverse: A Comparative Study Proceedings Article
In: T., Hao; J.G., Wu; X., Luo; Y., Sun; Y., Mu; S., Ge; W., Xie (Ed.): Lect. Notes Comput. Sci., pp. 3–16, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-981964406-3 (ISBN).
Abstract | Links | BibTeX | Tags: Comparatives studies, Digital age, Digital interactions, digital twin, Educational metaverse, Engineering education, Generative AI, Immersive, Matrix algebra, Metaverse, Metaverses, Personnel training, Students, Teaching, University campus, Virtual environments, virtual learning environment, Virtual learning environments, Virtual Reality, Virtualization
@inproceedings{li_enhancing_2025,
title = {Enhancing Linear Algebra Education with AI-Generated Content in the CityU Metaverse: A Comparative Study},
author = {Y. Li and E. C. H. Pang and C. S. Y. Ng and M. Azim and H. Leung},
editor = {Hao T. and Wu J.G. and Luo X. and Sun Y. and Mu Y. and Ge S. and Xie W.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003632691&doi=10.1007%2f978-981-96-4407-0_1&partnerID=40&md5=c067ba5d4c15e9c0353bf315680531fc},
doi = {10.1007/978-981-96-4407-0_1},
isbn = {03029743 (ISSN); 978-981964406-3 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15589 LNCS},
pages = {3–16},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {In today’s digital age, the metaverse is emerging as the forthcoming evolution of the internet. It provides an immersive space that marks a new frontier in the way digital interactions are facilitated and experienced. In this paper, we present the CityU Metaverse, which aims to construct a digital twin of our university campus. It is designed as an educational virtual world where learning applications can be embedded in this virtual campus, supporting not only remote and collaborative learning but also professional technical training to enhance educational experiences through immersive and interactive learning. To evaluate the effectiveness of this educational metaverse, we conducted an experiment focused on 3D linear transformation in linear algebra, with teaching content generated by generative AI, comparing our metaverse system with traditional teaching methods. Knowledge tests and surveys assessing learning interest revealed that students engaged with the CityU Metaverse, facilitated by AI-generated content, outperformed those in traditional settings and reported greater enjoyment during the learning process. The work provides valuable perspectives on the behaviors and interactions within the metaverse by analyzing user preferences and learning outcomes. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.},
keywords = {Comparatives studies, Digital age, Digital interactions, digital twin, Educational metaverse, Engineering education, Generative AI, Immersive, Matrix algebra, Metaverse, Metaverses, Personnel training, Students, Teaching, University campus, Virtual environments, virtual learning environment, Virtual learning environments, Virtual Reality, Virtualization},
pubstate = {published},
tppubtype = {inproceedings}
}
Song, T.; Pabst, F.; Eck, U.; Navab, N.
Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2901–2911, 2025, ISSN: 10772626 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: 3D reconstruction, adult, Augmented Reality, Computer graphics, computer interface, echography, female, human, Humans, Imaging, Intelligent robots, Intelligent virtual agents, Language Model, male, Medical robotics, Middle Aged, Mixed reality, Patient Acceptance of Health Care, patient attitude, Patient comfort, procedures, Real-world, Reality visualization, Robotic Ultrasound, Robotics, Three-Dimensional, three-dimensional imaging, Trust and Acceptance, Ultrasonic applications, Ultrasonic equipment, Ultrasonography, Ultrasound probes, User-Computer Interface, Virtual agent, Virtual assistants, Virtual environments, Virtual Reality, Visual languages, Visualization, Young Adult
@article{song_enhancing_2025,
title = {Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations},
author = {T. Song and F. Pabst and U. Eck and N. Navab},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003687673&doi=10.1109%2FTVCG.2025.3549181&partnerID=40&md5=0753cd3c57ac630480a19001cde28319},
doi = {10.1109/TVCG.2025.3549181},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2901–2911},
abstract = {Robotic ultrasound systems have the potential to improve medical diagnostics, but patient acceptance remains a key challenge. To address this, we propose a novel system that combines an AI-based virtual agent, powered by a large language model (LLM), with three mixed reality visualizations aimed at enhancing patient comfort and trust. The LLM enables the virtual assistant to engage in natural, conversational dialogue with patients, answering questions in any format and offering real-time reassurance, creating a more intelligent and reliable interaction. The virtual assistant is animated as controlling the ultrasound probe, giving the impression that the robot is guided by the assistant. The first visualization employs augmented reality (AR), allowing patients to see the real world and the robot with the virtual avatar superimposed. The second visualization is an augmented virtuality (AV) environment, where the real-world body part being scanned is visible, while a 3D Gaussian Splatting reconstruction of the room, excluding the robot, forms the virtual environment. The third is a fully immersive virtual reality (VR) experience, featuring the same 3D reconstruction but entirely virtual, where the patient sees a virtual representation of their body being scanned in a robot-free environment. In this case, the virtual ultrasound probe, mirrors the movement of the probe controlled by the robot, creating a synchronized experience as it touches and moves over the patient's virtual body. We conducted a comprehensive agent-guided robotic ultrasound study with all participants, comparing these visualizations against a standard robotic ultrasound procedure. Results showed significant improvements in patient trust, acceptance, and comfort. Based on these findings, we offer insights into designing future mixed reality visualizations and virtual agents to further enhance patient comfort and acceptance in autonomous medical procedures. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {3D reconstruction, adult, Augmented Reality, Computer graphics, computer interface, echography, female, human, Humans, Imaging, Intelligent robots, Intelligent virtual agents, Language Model, male, Medical robotics, Middle Aged, Mixed reality, Patient Acceptance of Health Care, patient attitude, Patient comfort, procedures, Real-world, Reality visualization, Robotic Ultrasound, Robotics, Three-Dimensional, three-dimensional imaging, Trust and Acceptance, Ultrasonic applications, Ultrasonic equipment, Ultrasonography, Ultrasound probes, User-Computer Interface, Virtual agent, Virtual assistants, Virtual environments, Virtual Reality, Visual languages, Visualization, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Stacchio, L.; Balloni, E.; Frontoni, E.; Paolanti, M.; Zingaretti, P.; Pierdicca, R.
MineVRA: Exploring the Role of Generative AI-Driven Content Development in XR Environments through a Context-Aware Approach Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 3602–3612, 2025, ISSN: 10772626 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: adult, Article, Artificial intelligence, Computer graphics, Computer vision, Content Development, Contents development, Context-Aware, Context-aware approaches, Extended reality, female, Generative adversarial networks, Generative AI, generative artificial intelligence, human, Human-in-the-loop, Immersive, Immersive environment, male, Multi-modal, User need, Virtual environments, Virtual Reality
@article{stacchio_minevra_2025,
title = {MineVRA: Exploring the Role of Generative AI-Driven Content Development in XR Environments through a Context-Aware Approach},
author = {L. Stacchio and E. Balloni and E. Frontoni and M. Paolanti and P. Zingaretti and R. Pierdicca},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003746367&doi=10.1109%2FTVCG.2025.3549160&partnerID=40&md5=3356eb968b3e6a0d3c9b75716b05fac4},
doi = {10.1109/TVCG.2025.3549160},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {3602–3612},
abstract = {The convergence of Artificial Intelligence (AI), Computer Vision (CV), Computer Graphics (CG), and Extended Reality (XR) is driving innovation in immersive environments. A key challenge in these environments is the creation of personalized 3D assets, traditionally achieved through manual modeling, a time-consuming process that often fails to meet individual user needs. More recently, Generative AI (GenAI) has emerged as a promising solution for automated, context-aware content generation. In this paper, we present MineVRA (Multimodal generative artificial iNtelligence for contExt-aware Virtual Reality Assets), a novel Human-In-The-Loop (HITL) XR framework that integrates GenAI to facilitate coherent and adaptive 3D content generation in immersive scenarios. To evaluate the effectiveness of this approach, we conducted a comparative user study analyzing the performance and user satisfaction of GenAI-generated 3D objects compared to those generated by Sketchfab in different immersive contexts. The results suggest that GenAI can significantly complement traditional 3D asset libraries, with valuable design implications for the development of human-centered XR environments. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {adult, Article, Artificial intelligence, Computer graphics, Computer vision, Content Development, Contents development, Context-Aware, Context-aware approaches, Extended reality, female, Generative adversarial networks, Generative AI, generative artificial intelligence, human, Human-in-the-loop, Immersive, Immersive environment, male, Multi-modal, User need, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Kim, Y.; Aamir, Z.; Singh, M.; Boorboor, S.; Mueller, K.; Kaufman, A. E.
Explainable XR: Understanding User Behaviors of XR Environments Using LLM-Assisted Analytics Framework Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2756–2766, 2025, ISSN: 10772626 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: adult, Agnostic, Article, Assistive, Cross Reality, Data Analytics, Data collection, data interpretation, Data recording, Data visualization, Extended reality, human, Language Model, Large language model, large language models, Multi-modal, Multimodal Data Collection, normal human, Personalized assistive technique, Personalized Assistive Techniques, recorder, Spatio-temporal data, therapy, user behavior, User behaviors, Virtual addresses, Virtual environments, Virtual Reality, Visual analytics, Visual languages
@article{kim_explainable_2025,
title = {Explainable XR: Understanding User Behaviors of XR Environments Using LLM-Assisted Analytics Framework},
author = {Y. Kim and Z. Aamir and M. Singh and S. Boorboor and K. Mueller and A. E. Kaufman},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003815583&doi=10.1109%2FTVCG.2025.3549537&partnerID=40&md5=bc5ac38eb19faa224282cf385f43799f},
doi = {10.1109/TVCG.2025.3549537},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2756–2766},
abstract = {We present Explainable XR, an end-to-end framework for analyzing user behavior in diverse eXtended Reality (XR) environments by leveraging Large Language Models (LLMs) for data interpretation assistance. Existing XR user analytics frameworks face challenges in handling cross-virtuality - AR, VR, MR - transitions, multi-user collaborative application scenarios, and the complexity of multimodal data. Explainable XR addresses these challenges by providing a virtuality-agnostic solution for the collection, analysis, and visualization of immersive sessions. We propose three main components in our framework: (1) A novel user data recording schema, called User Action Descriptor (UAD), that can capture the users' multimodal actions, along with their intents and the contexts; (2) a platform-agnostic XR session recorder, and (3) a visual analytics interface that offers LLM-assisted insights tailored to the analysts' perspectives, facilitating the exploration and analysis of the recorded XR session data. We demonstrate the versatility of Explainable XR by demonstrating five use-case scenarios, in both individual and collaborative XR applications across virtualities. Our technical evaluation and user studies show that Explainable XR provides a highly usable analytics solution for understanding user actions and delivering multifaceted, actionable insights into user behaviors in immersive environments. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {adult, Agnostic, Article, Assistive, Cross Reality, Data Analytics, Data collection, data interpretation, Data recording, Data visualization, Extended reality, human, Language Model, Large language model, large language models, Multi-modal, Multimodal Data Collection, normal human, Personalized assistive technique, Personalized Assistive Techniques, recorder, Spatio-temporal data, therapy, user behavior, User behaviors, Virtual addresses, Virtual environments, Virtual Reality, Visual analytics, Visual languages},
pubstate = {published},
tppubtype = {article}
}
Li, Z.; Zhang, H.; Peng, C.; Peiris, R.
Exploring Large Language Model-Driven Agents for Environment-Aware Spatial Interactions and Conversations in Virtual Reality Role-Play Scenarios Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR, pp. 1–11, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331536459 (ISBN).
Abstract | Links | BibTeX | Tags: Chatbots, Computer simulation languages, Context- awareness, context-awareness, Digital elevation model, Generative AI, Human-AI Interaction, Language Model, Large language model, large language models, Model agents, Role-play simulation, role-play simulations, Role-plays, Spatial interaction, Virtual environments, Virtual Reality, Virtual-reality environment
@inproceedings{li_exploring_2025,
title = {Exploring Large Language Model-Driven Agents for Environment-Aware Spatial Interactions and Conversations in Virtual Reality Role-Play Scenarios},
author = {Z. Li and H. Zhang and C. Peng and R. Peiris},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002706893&doi=10.1109%2FVR59515.2025.00025&partnerID=40&md5=1987c128f6ec4bd24011388ef9ece179},
doi = {10.1109/VR59515.2025.00025},
isbn = {9798331536459 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR},
pages = {1–11},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Recent research has begun adopting Large Language Model (LLM) agents to enhance Virtual Reality (VR) interactions, creating immersive chatbot experiences. However, while current studies focus on generating dialogue from user speech inputs, their abilities to generate richer experiences based on the perception of LLM agents' VR environments and interaction cues remain unexplored. Hence, in this work, we propose an approach that enables LLM agents to perceive virtual environments and generate environment-aware interactions and conversations for an embodied human-AI interaction experience in VR environments. Here, we define a schema for describing VR environments and their interactions through text prompts. We evaluate the performance of our method through five role-play scenarios created using our approach in a study with 14 participants. The findings discuss the opportunities and challenges of our proposed approach for developing environment-aware LLM agents that facilitate spatial interactions and conversations within VR role-play scenarios. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Chatbots, Computer simulation languages, Context- awareness, context-awareness, Digital elevation model, Generative AI, Human-AI Interaction, Language Model, Large language model, large language models, Model agents, Role-play simulation, role-play simulations, Role-plays, Spatial interaction, Virtual environments, Virtual Reality, Virtual-reality environment},
pubstate = {published},
tppubtype = {inproceedings}
}
Aloudat, M. Z.; Aboumadi, A.; Soliman, A.; Al-Mohammed, H. A.; al-Ali, M.; Mahgoub, A.; Barhamgi, M.; Yaacoub, E.
Metaverse Unbound: A Survey on Synergistic Integration Between Semantic Communication, 6G, and Edge Learning Journal Article
In: IEEE Access, vol. 13, pp. 58302–58350, 2025, ISSN: 21693536 (ISSN), (Publisher: Institute of Electrical and Electronics Engineers Inc.).
Abstract | Links | BibTeX | Tags: 6g wireless system, 6G wireless systems, Augmented Reality, Block-chain, Blockchain, Blockchain technology, Digital Twin Technology, Edge learning, Extended reality (XR), Language Model, Large language model, large language models (LLMs), Metaverse, Metaverses, Semantic communication, Virtual environments, Wireless systems
@article{aloudat_metaverse_2025,
title = {Metaverse Unbound: A Survey on Synergistic Integration Between Semantic Communication, 6G, and Edge Learning},
author = {M. Z. Aloudat and A. Aboumadi and A. Soliman and H. A. Al-Mohammed and M. al-Ali and A. Mahgoub and M. Barhamgi and E. Yaacoub},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003088610&doi=10.1109%2FACCESS.2025.3555753&partnerID=40&md5=c84a85efab6a29ee6916f5698922f720},
doi = {10.1109/ACCESS.2025.3555753},
issn = {21693536 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Access},
volume = {13},
pages = {58302–58350},
abstract = {With a focus on edge learning, blockchain, sixth generation (6G) wireless systems, semantic communication, and large language models (LLMs), this survey paper examines the revolutionary integration of cutting-edge technologies within the metaverse. This thorough examination highlights the critical role these technologies play in improving realism and user engagement on three main levels: technical, virtual, and physical. While the virtual layer focuses on building immersive experiences, the physical layer highlights improvements to the user interface through augmented reality (AR) goggles and virtual reality (VR) headsets. Blockchain-powered technical layer enables safe, decentralized communication. The survey highlights how the metaverse has the potential to drastically change how people interact in society by exploring applications in a variety of fields, such as immersive education, remote work, and entertainment. Concerns about privacy, scalability, and interoperability are raised, highlighting the necessity of continued study to realize the full potential of the metaverse. For scholars looking to broaden the reach and significance of the metaverse in the digital age, this paper is a useful tool. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Institute of Electrical and Electronics Engineers Inc.},
keywords = {6g wireless system, 6G wireless systems, Augmented Reality, Block-chain, Blockchain, Blockchain technology, Digital Twin Technology, Edge learning, Extended reality (XR), Language Model, Large language model, large language models (LLMs), Metaverse, Metaverses, Semantic communication, Virtual environments, Wireless systems},
pubstate = {published},
tppubtype = {article}
}
Afzal, M. Z.; Ali, S. K. A.; Stricker, D.; Eisert, P.; Hilsmann, A.; Pérez-Marcos, D.; Bianchi, M.; Crottaz-Herbette, S.; Ioris, R.; Mangina, E.; Sanguineti, M.; Salaberria, A.; de Lacalle, O. Lopez; García-Pablos, A.; Cuadros, M.
Next Generation XR Systems - Large Language Models Meet Augmented and Virtual Reality Journal Article
In: IEEE Computer Graphics and Applications, vol. 45, no. 1, pp. 43–55, 2025, ISSN: 02721716 (ISSN); 15581756 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: adult, Article, Augmented and virtual realities, Augmented Reality, Awareness, Context-Aware, human, Information Retrieval, Knowledge model, Knowledge reasoning, Knowledge retrieval, Language Model, Large language model, Mixed reality, neurorehabilitation, Position papers, privacy, Real- time, Reasoning, Situational awareness, Virtual environments, Virtual Reality
@article{afzal_next_2025,
title = {Next Generation XR Systems - Large Language Models Meet Augmented and Virtual Reality},
author = {M. Z. Afzal and S. K. A. Ali and D. Stricker and P. Eisert and A. Hilsmann and D. Pérez-Marcos and M. Bianchi and S. Crottaz-Herbette and R. Ioris and E. Mangina and M. Sanguineti and A. Salaberria and O. Lopez de Lacalle and A. García-Pablos and M. Cuadros},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003598602&doi=10.1109%2FMCG.2025.3548554&partnerID=40&md5=94e7efe987708afc9f066b906ce232b1},
doi = {10.1109/MCG.2025.3548554},
issn = {02721716 (ISSN); 15581756 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Computer Graphics and Applications},
volume = {45},
number = {1},
pages = {43–55},
abstract = {Extended reality (XR) is evolving rapidly, offering new paradigms for human-computer interaction. This position paper argues that integrating large language models (LLMs) with XR systems represents a fundamental shift toward more intelligent, context-aware, and adaptive mixed-reality experiences. We propose a structured framework built on three key pillars: first, perception and situational awareness, second, knowledge modeling and reasoning, and third, visualization and interaction. We believe leveraging LLMs within XR environments enables enhanced situational awareness, real-time knowledge retrieval, and dynamic user interaction, surpassing traditional XR capabilities. We highlight the potential of this integration in neurorehabilitation, safety training, and architectural design while underscoring ethical considerations, such as privacy, transparency, and inclusivity. This vision aims to spark discussion and drive research toward more intelligent, human-centric XR systems. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {adult, Article, Augmented and virtual realities, Augmented Reality, Awareness, Context-Aware, human, Information Retrieval, Knowledge model, Knowledge reasoning, Knowledge retrieval, Language Model, Large language model, Mixed reality, neurorehabilitation, Position papers, privacy, Real- time, Reasoning, Situational awareness, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Haoyang, H.; Wang, Z.; Liang, W.; Wang, Y.
X’s Day: Personality-Driven Virtual Human Behavior Generation Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 3514–3524, 2025, ISSN: 10772626 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: adult, Augmented Reality, Behavior Generation, Chatbots, Computer graphics, computer interface, Contextual Scene, female, human, Human behaviors, Humans, Long-term behavior, male, Novel task, Personality, Personality traits, Personality-driven Behavior, physiology, Social behavior, User-Computer Interface, Users' experiences, Virtual agent, Virtual environments, Virtual humans, Virtual Reality, Young Adult
@article{haoyang_xs_2025,
title = {X’s Day: Personality-Driven Virtual Human Behavior Generation},
author = {H. Haoyang and Z. Wang and W. Liang and Y. Wang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003864932&doi=10.1109%2FTVCG.2025.3549574&partnerID=40&md5=38fc6613a7c21a90f3738c048497d870},
doi = {10.1109/TVCG.2025.3549574},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {3514–3524},
abstract = {Developing convincing and realistic virtual human behavior is essential for enhancing user experiences in virtual reality (VR) and augmented reality (AR) settings. This paper introduces a novel task focused on generating long-term behaviors for virtual agents, guided by specific personality traits and contextual elements within 3D environments. We present a comprehensive framework capable of autonomously producing daily activities autoregressively. By modeling the intricate connections between personality characteristics and observable activities, we establish a hierarchical structure of Needs, Task, and Activity levels. Integrating a Behavior Planner and a World State module allows for the dynamic sampling of behaviors using large language models (LLMs), ensuring that generated activities remain relevant and responsive to environmental changes. Extensive experiments validate the effectiveness and adaptability of our approach across diverse scenarios. This research makes a significant contribution to the field by establishing a new paradigm for personalized and context-aware interactions with virtual humans, ultimately enhancing user engagement in immersive applications. Our project website is at: https://behavior.agent-x.cn/. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {adult, Augmented Reality, Behavior Generation, Chatbots, Computer graphics, computer interface, Contextual Scene, female, human, Human behaviors, Humans, Long-term behavior, male, Novel task, Personality, Personality traits, Personality-driven Behavior, physiology, Social behavior, User-Computer Interface, Users' experiences, Virtual agent, Virtual environments, Virtual humans, Virtual Reality, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Ly, D. -N.; Do, H. -N.; Tran, M. -T.; Le, K. -D.
Evaluation of AI-Based Assistant Representations on User Interaction in Virtual Explorations Proceedings Article
In: W., Buntine; M., Fjeld; T., Tran; M.-T., Tran; B., Huynh Thi Thanh; T., Miyoshi (Ed.): Commun. Comput. Info. Sci., pp. 323–337, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 18650929 (ISSN); 978-981964287-8 (ISBN).
Abstract | Links | BibTeX | Tags: 360-degree Video, AI-Based Assistant, Cultural heritages, Cultural science, Multiusers, Single users, Social interactions, Three dimensional computer graphics, User interaction, Users' experiences, Virtual environments, Virtual Exploration, Virtual Reality, Virtualization
@inproceedings{ly_evaluation_2025,
title = {Evaluation of AI-Based Assistant Representations on User Interaction in Virtual Explorations},
author = {D. -N. Ly and H. -N. Do and M. -T. Tran and K. -D. Le},
editor = {Buntine W. and Fjeld M. and Tran T. and Tran M.-T. and Huynh Thi Thanh B. and Miyoshi T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105004253350&doi=10.1007%2f978-981-96-4288-5_26&partnerID=40&md5=5f0a8c1e356cd3bdd4dda7f96f272154},
doi = {10.1007/978-981-96-4288-5_26},
isbn = {18650929 (ISSN); 978-981964287-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Commun. Comput. Info. Sci.},
volume = {2352 CCIS},
pages = {323–337},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Exploration activities, such as tourism, cultural heritage, and science, enhance knowledge and understanding. The rise of 360-degree videos allows users to explore cultural landmarks and destinations remotely. While multi-user VR environments encourage collaboration, single-user experiences often lack social interaction. Generative AI, particularly Large Language Models (LLMs), offer a way to improve single-user VR exploration through AI-driven virtual assistants, acting as tour guides or storytellers. However, it’s uncertain whether these assistants require a visual presence, and if so, what form it should take. To investigate this, we developed an AI-based assistant in three different forms: a voice-only avatar, a 3D human-sized avatar, and a mini-hologram avatar, and conducted a user study to evaluate their impact on user experience. The study, which involved 12 participants, found that the visual embodiments significantly reduce feelings of being alone, with distinct user preferences between the Human-sized avatar and the Mini hologram. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.},
keywords = {360-degree Video, AI-Based Assistant, Cultural heritages, Cultural science, Multiusers, Single users, Social interactions, Three dimensional computer graphics, User interaction, Users' experiences, Virtual environments, Virtual Exploration, Virtual Reality, Virtualization},
pubstate = {published},
tppubtype = {inproceedings}
}
Basouli, M.; Sheikhooni, S.
Application of Generative Artificial Intelligence in Simulating Virtual Tourism Experiences: Examining the Impact on Post-COVID Tourist Behavior Proceedings Article
In: pp. 593–596, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 28378296 (ISSN); 28378288 (ISSN), (Issue: 2025).
Abstract | Links | BibTeX | Tags: Advanced technology, Artificial intelligence, Behavioral Research, Commerce, Covid-19, Destination Marketing, Generative AI, Leisure industry, Literature reviews, Post-COVID, Tourism, Tourism industry, Tourist behavior, Tourist destinations, Virtual environments, Virtual Reality, Virtual Tourism, WebXR
@inproceedings{basouli_application_2025,
title = {Application of Generative Artificial Intelligence in Simulating Virtual Tourism Experiences: Examining the Impact on Post-COVID Tourist Behavior},
author = {M. Basouli and S. Sheikhooni},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105011597291&doi=10.1109%2FICWR65219.2025.11006234&partnerID=40&md5=55413d1f514a58726eed134828203915},
doi = {10.1109/ICWR65219.2025.11006234},
isbn = {28378296 (ISSN); 28378288 (ISSN)},
year = {2025},
date = {2025-01-01},
pages = {593–596},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This article examines the application of generative artificial intelligence in simulating virtual tourism experiences and its impact on tourist behavior in the postCOVID era. Utilizing advanced technologies such as Stable Diffusion, ChatGPT, and WebXR, a system has been designed to create interactive virtual experiences of tourist destinations. A literature review reveals that both virtual experiences and generative AI hold significant potential in the tourism industry. However, few studies have explored how these two technologies can be combined and their impact on tourist behavior. Additionally, considering that generative AI, as a tool for simulating tourism experiences, significantly influences tourists' perception of destinations and attractions, travel intention, travel anxiety, and willingness to pay, studying generative AI and virtual tourism seems essential and important. Therefore, this study aims to review previous research and explore the impact of AI-based virtual tourism experiences on tourist behavior in the post-COVID era. Moreover, the study investigates factors influencing the effectiveness of these experiences and the moderating role of safety and health concerns. Results also show that perceived realism and interactivity of virtual experiences are key factors in the effectiveness of these experiences. This research provides a theoretical framework for understanding the influence of generative AI on tourism behavior and offers important practical implications for destination marketers and policymakers in the post-COVID tourism industry. © 2025 Elsevier B.V., All rights reserved.},
note = {Issue: 2025},
keywords = {Advanced technology, Artificial intelligence, Behavioral Research, Commerce, Covid-19, Destination Marketing, Generative AI, Leisure industry, Literature reviews, Post-COVID, Tourism, Tourism industry, Tourist behavior, Tourist destinations, Virtual environments, Virtual Reality, Virtual Tourism, WebXR},
pubstate = {published},
tppubtype = {inproceedings}
}
Almashmoum, M.; Payton, A.; Johnstone, E.; Cunningham, J.; Ainsworth, J.
In: JMIR XR and Spatial Computing, vol. 2, 2025, ISSN: 28183045 (ISSN), (Publisher: JMIR Publications Inc.).
Abstract | Links | BibTeX | Tags: Artificial intelligence, digital environments, heuristic evaluation, knowledge sharing, multidisciplinary team meetings, simulation, Usability, Virtual environments, Virtual Reality, VR
@article{almashmoum_understanding_2025,
title = {Understanding the Views of Health Care Professionals on the Usability and Utility of Virtual Reality Multidisciplinary Team Meetings: Usability and Utility Study},
author = {M. Almashmoum and A. Payton and E. Johnstone and J. Cunningham and J. Ainsworth},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105012020235&doi=10.2196%2F60651&partnerID=40&md5=55e0ddff7b6b7dbde1ea4b1191f88d96},
doi = {10.2196/60651},
issn = {28183045 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {JMIR XR and Spatial Computing},
volume = {2},
abstract = {Background: Multidisciplinary team (MDT) meetings are one of the facilitators that enhance knowledge sharing among health care professionals. However, organizing a face-to-face MDT meeting to discuss patient treatment plans can be time-con-suming. Virtual reality software is widely used in health care nowadays to save time and protect lives. Therefore, the use of virtual reality multidisciplinary team (VRMDT) meeting software may help enhance knowledge sharing between health care professionals and make meetings more efficient. Objective: The objectives of this study were to introduce VRMDT software for enhancing knowledge sharing and to evaluate the feasibility and usability of the VRMDT for use by professionals in health care institutions. Methods: We invited participants from The University of Manchester Faculty for Biology, Medicine, and Health who had a health care background. As this was the first stage of software development, individuals who did not usually attend MDT meetings were also invited via email to participate in this study. Participants evaluated VRMDT using a Meta Quest 3 headset, and software developed using the Unity platform. The software contained an onboarding tutorial that taught the participants how to select items, load and rotate 3D Digital Imaging and Communications in Medicine files, talk to a generative artificial intelligence–supported avatar, and make notes. After the evaluation (approximately 15 min), participants received an electronic survey using the Qualtrics survey tool (Qualtrics International Inc) to score the usability and feasibility of the software by responding to the 10-item system usability scale, and 12-point heuristic evaluation questions with Neilsen severity rating. Results: A total of 12 participants, including 4 health informatics, 3 with a nursing background, 2 medical doctors, 1 radiologist, and 2 biostatisticians, participated in the study. The most common age bracket of participants was 20‐30 years (6/12, 50%). Most of the respondents had no experience with virtual reality, either in educational or entertainment settings. The VRMDT received a mean usability score of 72.7 (range between 68 and 80.3), earning an overall “good” rating grade. The mean score of single items in the heuristic evaluation questionnaires was less than 1 out of 4 (the overall mean was 0.6), which indicates that only minor problems were encountered when using this software. Overall, the participant’s feedback was good with highlighted issues including a poor internet connection and the quality of the generative artificial intelligence response. Conclusions: VRMDT software (developed by SentiraXR) was developed with several functions aimed at helping health care professionals to discuss medical conditions efficiently. Participants found that the VRMDT is a powerful, and useful tool for enhancing knowledge sharing among professionals who are involved in MDT meetings due to its functionality and multiuser interactive environments. Additionally, there may be the possibility of using it to train junior professionals to interpret medical reports. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: JMIR Publications Inc.},
keywords = {Artificial intelligence, digital environments, heuristic evaluation, knowledge sharing, multidisciplinary team meetings, simulation, Usability, Virtual environments, Virtual Reality, VR},
pubstate = {published},
tppubtype = {article}
}
Tovias, E.; Wu, L.
Leveraging Virtual Reality and AI for Enhanced Vocabulary Learning Proceedings Article
In: pp. 308, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331521646 (ISBN).
Abstract | Links | BibTeX | Tags: Avatar, Avatars, E-Learning, Immersive, Interactive computer graphics, Interactive learning, Language Model, Large language model, large language models, Learning experiences, Real time interactions, Text-based methods, user experience, Users' experiences, Virtual environments, Virtual Reality, Vocabulary learning
@inproceedings{tovias_leveraging_2025,
title = {Leveraging Virtual Reality and AI for Enhanced Vocabulary Learning},
author = {E. Tovias and L. Wu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105017563813&doi=10.1109%2FICHMS65439.2025.11154184&partnerID=40&md5=7b79f93d6f8ec222b25a4bfeac408d3a},
doi = {10.1109/ICHMS65439.2025.11154184},
isbn = {9798331521646 (ISBN)},
year = {2025},
date = {2025-01-01},
pages = {308},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This study examines the integration of virtual reality (VR) and Artificial Intelligence (AI) to create more immersive, interactive learning experiences. By combining VR's engaging user experience with AI-powered avatars, this research explores how these tools can enhance vocabulary learning compared to traditional text-based methods. Utilizing a Meta Quest 3 headset, Unity for development, and OpenAI's API & ElevenLabs for dynamic dialogues, this system offers personalized, real-time interactions (Fig. 1). The integration of these technologies fosters a bright future, driving significant advancements in the development of highly immersive and effective learning environments. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Avatar, Avatars, E-Learning, Immersive, Interactive computer graphics, Interactive learning, Language Model, Large language model, large language models, Learning experiences, Real time interactions, Text-based methods, user experience, Users' experiences, Virtual environments, Virtual Reality, Vocabulary learning},
pubstate = {published},
tppubtype = {inproceedings}
}
Ding, S.; Yalla, J. P.; Chen, Y.
Demo Abstract: RAG-Driven 3D Question Answering in Edge-Assisted Virtual Reality Proceedings Article
In: Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331543709 (ISBN).
Abstract | Links | BibTeX | Tags: Edge computing, Edge server, Interface states, Knowledge database, Language Model, Local knowledge, Office environments, Question Answering, Real- time, User interaction, User interfaces, Virtual environments, Virtual Reality, Virtual reality system, Virtual-reality environment
@inproceedings{ding_demo_2025,
title = {Demo Abstract: RAG-Driven 3D Question Answering in Edge-Assisted Virtual Reality},
author = {S. Ding and J. P. Yalla and Y. Chen},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105017970015&doi=10.1109%2FINFOCOMWKSHPS65812.2025.11152992&partnerID=40&md5=0e079de018ae9c4a564b98c304a9ea6c},
doi = {10.1109/INFOCOMWKSHPS65812.2025.11152992},
isbn = {9798331543709 (ISBN)},
year = {2025},
date = {2025-01-01},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {The rapid development of large language models (LLMs) has created new opportunities in 3D question answering (3D-QA) for virtual reality (VR). 3D-QA enhances user interaction by answering questions about virtual environments. However, performing 3D-QA in VR systems using LLM-based approaches is computation-intensive. Furthermore, general LLMs tend to generate inaccurate responses as they lack context-specific information in VR environments. To mitigate these limitations, we propose OfficeVR-QA, a 3D-QA framework for edge-assisted VR to alleviate the resource constraints of VR devices with the help of edge servers, demonstrated in a virtual office environment. To improve the accuracy of the generated answers, the edge server of OfficeVR-QA hosts retrieval-augmented generation (RAG) that augments LLMs with external knowledge retrieved from a local knowledge database extracted from VR environments and users. During an interactive demo, OfficeVR-QA will continuously update the local knowledge database in real time by transmitting participants' position and orientation data to the edge server, enabling adaptive responses to changes in the participants' states. Participants will navigate a VR office environment, interact with a VR user interface to ask questions, and observe the accuracy of dynamic responses based on their real-time state changes. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Edge computing, Edge server, Interface states, Knowledge database, Language Model, Local knowledge, Office environments, Question Answering, Real- time, User interaction, User interfaces, Virtual environments, Virtual Reality, Virtual reality system, Virtual-reality environment},
pubstate = {published},
tppubtype = {inproceedings}
}