AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Barbu, M.; Iordache, D. -D.; Petre, I.; Barbu, D. -C.; Băjenaru, L.
Framework Design for Reinforcing the Potential of XR Technologies in Transforming Inclusive Education Journal Article
In: Applied Sciences (Switzerland), vol. 15, no. 3, 2025, ISSN: 20763417 (ISSN).
Abstract | Links | BibTeX | Tags: Adaptive Learning, Adversarial machine learning, Artificial intelligence technologies, Augmented Reality, Contrastive Learning, Educational Technology, Extended reality (XR), Federated learning, Framework designs, Generative adversarial networks, Immersive, immersive experience, Immersive learning, Inclusive education, Learning platform, Special education needs
@article{barbu_framework_2025,
title = {Framework Design for Reinforcing the Potential of XR Technologies in Transforming Inclusive Education},
author = {M. Barbu and D. -D. Iordache and I. Petre and D. -C. Barbu and L. Băjenaru},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217742383&doi=10.3390%2fapp15031484&partnerID=40&md5=3148ff2a8a8fa1bef8094199cd6d32e3},
doi = {10.3390/app15031484},
issn = {20763417 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Applied Sciences (Switzerland)},
volume = {15},
number = {3},
abstract = {This study presents a novel approach to inclusive education by integrating augmented reality (XR) and generative artificial intelligence (AI) technologies into an immersive and adaptive learning platform designed for students with special educational needs. Building upon existing solutions, the approach uniquely combines XR and generative AI to facilitate personalized, accessible, and interactive learning experiences tailored to individual requirements. The framework incorporates an intuitive Unity XR-based interface alongside a generative AI module to enable near real-time customization of content and interactions. Additionally, the study examines related generative AI initiatives that promote inclusion through enhanced communication tools, educational support, and customizable assistive technologies. The motivation for this study arises from the pressing need to address the limitations of traditional educational methods, which often fail to meet the diverse needs of learners with special educational requirements. The integration of XR and generative AI offers transformative potential by creating adaptive, immersive, and inclusive learning environments. This approach ensures real-time adaptability to individual progress and accessibility, addressing critical barriers such as static content and lack of inclusivity in existing systems. The research outlines a pathway toward more inclusive and equitable education, significantly enhancing opportunities for learners with diverse needs and contributing to broader social integration and equity in education. © 2025 by the authors.},
keywords = {Adaptive Learning, Adversarial machine learning, Artificial intelligence technologies, Augmented Reality, Contrastive Learning, Educational Technology, Extended reality (XR), Federated learning, Framework designs, Generative adversarial networks, Immersive, immersive experience, Immersive learning, Inclusive education, Learning platform, Special education needs},
pubstate = {published},
tppubtype = {article}
}
This study presents a novel approach to inclusive education by integrating augmented reality (XR) and generative artificial intelligence (AI) technologies into an immersive and adaptive learning platform designed for students with special educational needs. Building upon existing solutions, the approach uniquely combines XR and generative AI to facilitate personalized, accessible, and interactive learning experiences tailored to individual requirements. The framework incorporates an intuitive Unity XR-based interface alongside a generative AI module to enable near real-time customization of content and interactions. Additionally, the study examines related generative AI initiatives that promote inclusion through enhanced communication tools, educational support, and customizable assistive technologies. The motivation for this study arises from the pressing need to address the limitations of traditional educational methods, which often fail to meet the diverse needs of learners with special educational requirements. The integration of XR and generative AI offers transformative potential by creating adaptive, immersive, and inclusive learning environments. This approach ensures real-time adaptability to individual progress and accessibility, addressing critical barriers such as static content and lack of inclusivity in existing systems. The research outlines a pathway toward more inclusive and equitable education, significantly enhancing opportunities for learners with diverse needs and contributing to broader social integration and equity in education. © 2025 by the authors.