AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Barbu, M.; Iordache, D. -D.; Petre, I.; Barbu, D. -C.; Băjenaru, L.
Framework Design for Reinforcing the Potential of XR Technologies in Transforming Inclusive Education Journal Article
In: Applied Sciences (Switzerland), vol. 15, no. 3, 2025, ISSN: 20763417 (ISSN).
Abstract | Links | BibTeX | Tags: Adaptive Learning, Adversarial machine learning, Artificial intelligence technologies, Augmented Reality, Contrastive Learning, Educational Technology, Extended reality (XR), Federated learning, Framework designs, Generative adversarial networks, Immersive, immersive experience, Immersive learning, Inclusive education, Learning platform, Special education needs
@article{barbu_framework_2025,
title = {Framework Design for Reinforcing the Potential of XR Technologies in Transforming Inclusive Education},
author = {M. Barbu and D. -D. Iordache and I. Petre and D. -C. Barbu and L. Băjenaru},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217742383&doi=10.3390%2fapp15031484&partnerID=40&md5=3148ff2a8a8fa1bef8094199cd6d32e3},
doi = {10.3390/app15031484},
issn = {20763417 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Applied Sciences (Switzerland)},
volume = {15},
number = {3},
abstract = {This study presents a novel approach to inclusive education by integrating augmented reality (XR) and generative artificial intelligence (AI) technologies into an immersive and adaptive learning platform designed for students with special educational needs. Building upon existing solutions, the approach uniquely combines XR and generative AI to facilitate personalized, accessible, and interactive learning experiences tailored to individual requirements. The framework incorporates an intuitive Unity XR-based interface alongside a generative AI module to enable near real-time customization of content and interactions. Additionally, the study examines related generative AI initiatives that promote inclusion through enhanced communication tools, educational support, and customizable assistive technologies. The motivation for this study arises from the pressing need to address the limitations of traditional educational methods, which often fail to meet the diverse needs of learners with special educational requirements. The integration of XR and generative AI offers transformative potential by creating adaptive, immersive, and inclusive learning environments. This approach ensures real-time adaptability to individual progress and accessibility, addressing critical barriers such as static content and lack of inclusivity in existing systems. The research outlines a pathway toward more inclusive and equitable education, significantly enhancing opportunities for learners with diverse needs and contributing to broader social integration and equity in education. © 2025 by the authors.},
keywords = {Adaptive Learning, Adversarial machine learning, Artificial intelligence technologies, Augmented Reality, Contrastive Learning, Educational Technology, Extended reality (XR), Federated learning, Framework designs, Generative adversarial networks, Immersive, immersive experience, Immersive learning, Inclusive education, Learning platform, Special education needs},
pubstate = {published},
tppubtype = {article}
}
2024
Bernetti, I.; Borghini, T.; Capecchi, I.
Integrating Virtual Reality and Artificial Intelligence in Agricultural Planning: Insights from the V.AİḞ.AṘṀ. Application Proceedings Article
In: L.T., De Paolis; P., Arpaia; M., Sacco (Ed.): Lect. Notes Comput. Sci., pp. 342–350, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303171706-2 (ISBN).
Abstract | Links | BibTeX | Tags: Agricultural management, Agricultural planning, Agricultural resources, Artificial intelligence technologies, Collaborative Virtual Reality, Critical thinking, Educational approach, Management applications, Openai, Resource management
@inproceedings{bernetti_integrating_2024,
title = {Integrating Virtual Reality and Artificial Intelligence in Agricultural Planning: Insights from the V.AİḞ.AṘṀ. Application},
author = {I. Bernetti and T. Borghini and I. Capecchi},
editor = {De Paolis L.T. and Arpaia P. and Sacco M.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204516778&doi=10.1007%2f978-3-031-71707-9_28&partnerID=40&md5=a887379b08dc925667f255cfcacfb4b9},
doi = {10.1007/978-3-031-71707-9_28},
isbn = {03029743 (ISSN); 978-303171706-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15027 LNCS},
pages = {342–350},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The V.A.I.F.A.R.M. (Virtual and Artificial Intelligence for Farming and Agricultural Resource Management) app explores the integration of collaborative virtual reality (VR) with generative artificial intelligence (AI), specifically utilizing ChatGPT, to enhance educational approaches within agricultural management and planning. This study aims to investigate the educational outcomes associated with the combined use of VR and AI technologies, with a particular focus on their impact on critical thinking, problem-solving abilities, and collaborative learning among university students engaged in agricultural studies. By employing VR, the project creates a simulated agricultural environment where students are tasked with various management and planning activities, offering a practical application of theoretical knowledge. The addition of ChatGPT facilitates interactive, AI-mediated dialogues, challenging students to tackle complex agricultural problems through informed decision-making processes. The research anticipates findings that suggest an improvement in student engagement and a better grasp of complicated agricultural concepts, attributed to the immersive and interactive nature of the learning experience. Furthermore, it examines the role of VR and AI in cultivating essential soft skills critical for the agricultural sector. The study contributes to the understanding of how collaborative VR and generative AI can be effectively combined to advance educational practices in agriculture, aiming for a balanced evaluation of their potential benefits without overstating the outcomes. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Agricultural management, Agricultural planning, Agricultural resources, Artificial intelligence technologies, Collaborative Virtual Reality, Critical thinking, Educational approach, Management applications, Openai, Resource management},
pubstate = {published},
tppubtype = {inproceedings}
}
Na, M.; Lee, J.
Generative AI-Enabled Energy-Efficient Mobile Augmented Reality in Multi-Access Edge Computing Journal Article
In: Applied Sciences (Switzerland), vol. 14, no. 18, 2024, ISSN: 20763417 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence technologies, Augmented Reality, benchmarking, Computation offloading, Edge computing, Energy Efficient, Generative adversarial networks, Generative AI, Image enhancement, Mobile augmented reality, Mobile edge computing, Multi-access edge computing, Multiaccess, Quality of Service, Resolution process, super-resolution, Superresolution, Trade off
@article{na_generative_2024,
title = {Generative AI-Enabled Energy-Efficient Mobile Augmented Reality in Multi-Access Edge Computing},
author = {M. Na and J. Lee},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205236316&doi=10.3390%2fapp14188419&partnerID=40&md5=0aa1c42cb7343cfb55a9dc1e66494dc6},
doi = {10.3390/app14188419},
issn = {20763417 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Applied Sciences (Switzerland)},
volume = {14},
number = {18},
abstract = {This paper proposes a novel offloading and super-resolution (SR) control scheme for energy-efficient mobile augmented reality (MAR) in multi-access edge computing (MEC) using SR as a promising generative artificial intelligence (GAI) technology. Specifically, SR can enhance low-resolution images into high-resolution versions using GAI technologies. This capability is particularly advantageous in MAR by lowering the bitrate required for network transmission. However, this SR process requires considerable computational resources and can introduce latency, potentially overloading the MEC server if there are numerous offload requests for MAR services. In this context, we conduct an empirical study to verify that the computational latency of SR increases with the upscaling level. Therefore, we demonstrate a trade-off between computational latency and improved service satisfaction when upscaling images for object detection, as it enhances the detection accuracy. From this perspective, determining whether to apply SR for MAR, while jointly controlling offloading decisions, is challenging. Consequently, to design energy-efficient MAR, we rigorously formulate analytical models for the energy consumption of a MAR device, the overall latency and the MAR satisfaction of service quality from the enforcement of the service accuracy, taking into account the SR process at the MEC server. Finally, we develop a theoretical framework that optimizes the computation offloading and SR control problem for MAR clients by jointly optimizing the offloading and SR decisions, considering their trade-off in MAR with MEC. Finally, the performance evaluation indicates that our proposed framework effectively supports MAR services by efficiently managing offloading and SR decisions, balancing trade-offs between energy consumption, latency, and service satisfaction compared to benchmarks. © 2024 by the authors.},
keywords = {Artificial intelligence technologies, Augmented Reality, benchmarking, Computation offloading, Edge computing, Energy Efficient, Generative adversarial networks, Generative AI, Image enhancement, Mobile augmented reality, Mobile edge computing, Multi-access edge computing, Multiaccess, Quality of Service, Resolution process, super-resolution, Superresolution, Trade off},
pubstate = {published},
tppubtype = {article}
}
2023
Yeo, J. Q.; Wang, Y.; Tanary, S.; Cheng, J.; Lau, M.; Ng, A. B.; Guan, F.
AICRID: AI-Empowered CR For Interior Design Proceedings Article
In: G., Bruder; A.H., Olivier; A., Cunningham; E.Y., Peng; J., Grubert; I., Williams (Ed.): Proc. - IEEE Int. Symp. Mixed Augment. Real. Adjunct, ISMAR-Adjunct, pp. 837–841, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 979-835032891-2 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D models, 3d-modeling, Architectural design, Artificial intelligence, Artificial intelligence technologies, Augmented Reality, Augmented reality technology, Interior Design, Interior designs, machine learning, Machine-learning, Model generation, Novel design, Text images, User need, Visualization
@inproceedings{yeo_aicrid_2023,
title = {AICRID: AI-Empowered CR For Interior Design},
author = {J. Q. Yeo and Y. Wang and S. Tanary and J. Cheng and M. Lau and A. B. Ng and F. Guan},
editor = {Bruder G. and Olivier A.H. and Cunningham A. and Peng E.Y. and Grubert J. and Williams I.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180375829&doi=10.1109%2fISMAR-Adjunct60411.2023.00184&partnerID=40&md5=b14d89dbd38a4dfe3f85b90800d42e78},
doi = {10.1109/ISMAR-Adjunct60411.2023.00184},
isbn = {979-835032891-2 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Proc. - IEEE Int. Symp. Mixed Augment. Real. Adjunct, ISMAR-Adjunct},
pages = {837–841},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Augmented Reality (AR) technologies have been utilized for interior design for years. Normally 3D furniture models need to be created manually or by scanning with specialized devices and this is usually a costly process. Additionally, users need controllers or hands for manipulating the virtual furniture which may lead to fatigue for long-time usage. Artificial Intelligence (AI) technologies have made it possible to generate 3D models from texts, images or both and show potential to automate interactions through the user's voice. We propose a novel design, AICRID in short, which aims to automate the 3D model generation and to facilitate the interactions for interior design AR by leveraging on AI technologies. Specifically, our design will allow the users to directly generate 3D furniture models with generative AI, enabling them to directly interact with the virtual objects through their voices. © 2023 IEEE.},
keywords = {3D modeling, 3D models, 3d-modeling, Architectural design, Artificial intelligence, Artificial intelligence technologies, Augmented Reality, Augmented reality technology, Interior Design, Interior designs, machine learning, Machine-learning, Model generation, Novel design, Text images, User need, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}