AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2016
Aprovitola, Andrea; Gallo, Luigi
Knee Bone Segmentation from MRI: A Classification and Literature Review Journal Article
In: Biocybernetics and Biomedical Engineering, vol. 36, no. 2, pp. 437–449, 2016, ISSN: 02085216.
Abstract | Links | BibTeX | Tags: Healthcare, Knee bone, MRI, Segmentation
@article{aprovitolaKneeBoneSegmentation2016,
title = {Knee Bone Segmentation from MRI: A Classification and Literature Review},
author = { Andrea Aprovitola and Luigi Gallo},
doi = {10.1016/j.bbe.2015.12.007},
issn = {02085216},
year = {2016},
date = {2016-01-01},
urldate = {2016-12-06},
journal = {Biocybernetics and Biomedical Engineering},
volume = {36},
number = {2},
pages = {437--449},
abstract = {Segmentation of cartilage from Magnetic Resonance (MR) images has evolved as a tool for the diagnosis of knee joint pathologies. However, accuracy and reproducibility of automated methods of cartilage segmentation may require the prior extraction of bone surfaces from MR imaging sequences specifically designed to evidence the cartilage and not the bone. Thus a priori knowledge of knee joint structures and fully automated segmentation methods are adopted to provide reliable detection of bone surfaces. In this paper, we review knee bone segmentation methods from MR images. We classified the methods proposed in literature according to the level of a priori knowledge, the level of automation and the level of manual user interaction. Furthermore we discuss the segmentation results in literature in relation to the MR sequences used to image the bone.},
keywords = {Healthcare, Knee bone, MRI, Segmentation},
pubstate = {published},
tppubtype = {article}
}
Aprovitola, Andrea; Gallo, Luigi
Knee bone segmentation from MRI: A classification and literature review Journal Article
In: Biocybernetics and Biomedical Engineering, vol. 36, no. 2, pp. 437–449, 2016, ISSN: 02085216.
Abstract | Links | BibTeX | Tags: Healthcare, Knee bone, MRI, Segmentation
@article{aprovitola_knee_2016,
title = {Knee bone segmentation from MRI: A classification and literature review},
author = {Andrea Aprovitola and Luigi Gallo},
url = {http://linkinghub.elsevier.com/retrieve/pii/S020852161630002X},
doi = {10.1016/j.bbe.2015.12.007},
issn = {02085216},
year = {2016},
date = {2016-01-01},
urldate = {2016-12-06},
journal = {Biocybernetics and Biomedical Engineering},
volume = {36},
number = {2},
pages = {437–449},
abstract = {Segmentation of cartilage from Magnetic Resonance (MR) images has evolved as a tool for the diagnosis of knee joint pathologies. However, accuracy and reproducibility of automated methods of cartilage segmentation may require the prior extraction of bone surfaces from MR imaging sequences specifically designed to evidence the cartilage and not the bone. Thus a priori knowledge of knee joint structures and fully automated segmentation methods are adopted to provide reliable detection of bone surfaces. In this paper, we review knee bone segmentation methods from MR images. We classified the methods proposed in literature according to the level of a priori knowledge, the level of automation and the level of manual user interaction. Furthermore we discuss the segmentation results in literature in relation to the MR sequences used to image the bone.},
keywords = {Healthcare, Knee bone, MRI, Segmentation},
pubstate = {published},
tppubtype = {article}
}
2015
Franchini, Silvia; Gentile, Antonio; Sorbello, Filippo; Vassallo, Giorgio; Vitabile, Salvatore
ConformalALU: A Conformal Geometric Algebra Coprocessor for Medical Image Processing Journal Article
In: IEEE Transactions on Computers, vol. 64, no. 4, pp. 955–970, 2015, ISSN: 0018-9340.
Abstract | Links | BibTeX | Tags: 3D modeling, Clifford algebra, Computational geometry, Conformal geometric algebra, Embedded coprocessors, Field Programmable Gate Arrays, FPGA prototyping, Geometric algebra, Growing Neural Gas, iterative closest point (ICP), marching spheres, Medical image registration, Medical Imaging, Segmentation, systems-on-programmable-chip, thin-plate spline robust point matching (TPS-RPM), Volume registration
@article{franchiniConformalALUConformalGeometric2015,
title = {ConformalALU: A Conformal Geometric Algebra Coprocessor for Medical Image Processing},
author = { Silvia Franchini and Antonio Gentile and Filippo Sorbello and Giorgio Vassallo and Salvatore Vitabile},
doi = {10.1109/TC.2014.2315652},
issn = {0018-9340},
year = {2015},
date = {2015-01-01},
journal = {IEEE Transactions on Computers},
volume = {64},
number = {4},
pages = {955--970},
abstract = {Medical imaging involves important computational geometric problems, such as image segmentation and analysis, shape approximation, three-dimensional (3D) modeling, and registration of volumetric data. In the last few years, Conformal Geometric Algebra (CGA), based on five-dimensional (5D) Clifford Algebra, is emerging as a new paradigm that offers simple and universal operators for the representation and solution of complex geometric problems. However, the widespread use of CGA has been so far hindered by its high dimensionality and computational complexity. This paper proposes a simplified formulation of the conformal geometric operations (reflections, rotations, translations, and uniform scaling) aimed at a parallel hardware implementation. A specialized coprocessing architecture (ConformalALU) that offers direct hardware support to the new CGA operators, is also presented. The ConformalALU has been prototyped as a complete System-on-Programmable-Chip (SoPC) on the Xilinx ML507 FPGA board, containing a Virtex-5 FPGA device. Experimental results show average speedups of one order of magnitude for CGA rotations, translations, and dilations with respect to the geometric algebra software library Gaigen running on the general-purpose PowerPC processor embedded in the target FPGA device. A suite of medical imaging applications, including segmentation, 3D modeling and registration of medical data, has been used as testbench to evaluate the coprocessor effectiveness. textcopyright 2015 IEEE.},
keywords = {3D modeling, Clifford algebra, Computational geometry, Conformal geometric algebra, Embedded coprocessors, Field Programmable Gate Arrays, FPGA prototyping, Geometric algebra, Growing Neural Gas, iterative closest point (ICP), marching spheres, Medical image registration, Medical Imaging, Segmentation, systems-on-programmable-chip, thin-plate spline robust point matching (TPS-RPM), Volume registration},
pubstate = {published},
tppubtype = {article}
}
Franchini, Silvia; Gentile, Antonio; Sorbello, Filippo; Vassallo, Giorgio; Vitabile, Salvatore
ConformalALU: A conformal geometric algebra coprocessor for medical image processing Journal Article
In: IEEE Transactions on Computers, vol. 64, no. 4, pp. 955–970, 2015, ISSN: 0018-9340.
Abstract | Links | BibTeX | Tags: 3D modeling, Clifford algebra, Computational geometry, Conformal geometric algebra, Embedded coprocessors, Field Programmable Gate Arrays, FPGA prototyping, Geometric algebra, Growing Neural Gas, iterative closest point (ICP), marching spheres, Medical image registration, Medical Imaging, Segmentation, systems-on-programmable-chip, thin-plate spline robust point matching (TPS-RPM), Volume registration
@article{franchini_conformalalu_2015,
title = {ConformalALU: A conformal geometric algebra coprocessor for medical image processing},
author = {Silvia Franchini and Antonio Gentile and Filippo Sorbello and Giorgio Vassallo and Salvatore Vitabile},
doi = {10.1109/TC.2014.2315652},
issn = {0018-9340},
year = {2015},
date = {2015-01-01},
journal = {IEEE Transactions on Computers},
volume = {64},
number = {4},
pages = {955–970},
abstract = {Medical imaging involves important computational geometric problems, such as image segmentation and analysis, shape approximation, three-dimensional (3D) modeling, and registration of volumetric data. In the last few years, Conformal Geometric Algebra (CGA), based on five-dimensional (5D) Clifford Algebra, is emerging as a new paradigm that offers simple and universal operators for the representation and solution of complex geometric problems. However, the widespread use of CGA has been so far hindered by its high dimensionality and computational complexity. This paper proposes a simplified formulation of the conformal geometric operations (reflections, rotations, translations, and uniform scaling) aimed at a parallel hardware implementation. A specialized coprocessing architecture (ConformalALU) that offers direct hardware support to the new CGA operators, is also presented. The ConformalALU has been prototyped as a complete System-on-Programmable-Chip (SoPC) on the Xilinx ML507 FPGA board, containing a Virtex-5 FPGA device. Experimental results show average speedups of one order of magnitude for CGA rotations, translations, and dilations with respect to the geometric algebra software library Gaigen running on the general-purpose PowerPC processor embedded in the target FPGA device. A suite of medical imaging applications, including segmentation, 3D modeling and registration of medical data, has been used as testbench to evaluate the coprocessor effectiveness. © 2015 IEEE.},
keywords = {3D modeling, Clifford algebra, Computational geometry, Conformal geometric algebra, Embedded coprocessors, Field Programmable Gate Arrays, FPGA prototyping, Geometric algebra, Growing Neural Gas, iterative closest point (ICP), marching spheres, Medical image registration, Medical Imaging, Segmentation, systems-on-programmable-chip, thin-plate spline robust point matching (TPS-RPM), Volume registration},
pubstate = {published},
tppubtype = {article}
}
2012
Franchini, Silvia; Gentile, Antonio; Sorbello, Filippo; Vassallo, Giorgio; Vitabile, Salvatore
Clifford Algebra Based Edge Detector for Color Images Proceedings Article
In: pp. 84–91, 2012, ISBN: 978-0-7695-4687-2.
Abstract | Links | BibTeX | Tags: Clifford algebra, Clifford convolution, Clifford Fourier transform, Color image edge detection, Edge detection, Geometric algebra, Image processing, Segmentation
@inproceedings{franchiniCliffordAlgebraBased2012,
title = {Clifford Algebra Based Edge Detector for Color Images},
author = { Silvia Franchini and Antonio Gentile and Filippo Sorbello and Giorgio Vassallo and Salvatore Vitabile},
doi = {10.1109/CISIS.2012.128},
isbn = {978-0-7695-4687-2},
year = {2012},
date = {2012-01-01},
pages = {84--91},
abstract = {Edge detection is one of the most used methods for feature extraction in computer vision applications. Feature extraction is traditionally founded on pattern recognition methods exploiting the basic concepts of convolution and Fourier transform. For color image edge detection the traditional methods used for gray-scale images are usually extended and applied to the three color channels separately. This leads to increased computational requirements and long execution times. In this paper we propose a new, enhanced version of an edge detection algorithm that treats color value triples as vectors and exploits the geometric product of vectors defined in the Clifford algebra framework to extend the traditional concepts of convolution and Fourier transform to vector fields. Experimental results presented in the paper show that the proposed algorithm achieves detection performance comparable to the classical edge detection methods allowing at the same time for a significant reduction (about 33%) of computational times. textcopyright 2012 Crown Copyright.},
keywords = {Clifford algebra, Clifford convolution, Clifford Fourier transform, Color image edge detection, Edge detection, Geometric algebra, Image processing, Segmentation},
pubstate = {published},
tppubtype = {inproceedings}
}
Franchini, Silvia; Gentile, Antonio; Sorbello, Filippo; Vassallo, Giorgio; Vitabile, Salvatore
Clifford Algebra based edge detector for color images Proceedings Article
In: pp. 84–91, 2012, ISBN: 978-0-7695-4687-2.
Abstract | Links | BibTeX | Tags: Clifford algebra, Clifford convolution, Clifford Fourier transform, Color image edge detection, Edge detection, Geometric algebra, Image processing, Segmentation
@inproceedings{franchini_clifford_2012,
title = {Clifford Algebra based edge detector for color images},
author = {Silvia Franchini and Antonio Gentile and Filippo Sorbello and Giorgio Vassallo and Salvatore Vitabile},
doi = {10.1109/CISIS.2012.128},
isbn = {978-0-7695-4687-2},
year = {2012},
date = {2012-01-01},
pages = {84–91},
abstract = {Edge detection is one of the most used methods for feature extraction in computer vision applications. Feature extraction is traditionally founded on pattern recognition methods exploiting the basic concepts of convolution and Fourier transform. For color image edge detection the traditional methods used for gray-scale images are usually extended and applied to the three color channels separately. This leads to increased computational requirements and long execution times. In this paper we propose a new, enhanced version of an edge detection algorithm that treats color value triples as vectors and exploits the geometric product of vectors defined in the Clifford algebra framework to extend the traditional concepts of convolution and Fourier transform to vector fields. Experimental results presented in the paper show that the proposed algorithm achieves detection performance comparable to the classical edge detection methods allowing at the same time for a significant reduction (about 33%) of computational times. © 2012 Crown Copyright.},
keywords = {Clifford algebra, Clifford convolution, Clifford Fourier transform, Color image edge detection, Edge detection, Geometric algebra, Image processing, Segmentation},
pubstate = {published},
tppubtype = {inproceedings}
}