AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Gkournelos, C.; Konstantinou, C.; Angelakis, P.; Michalos, G.; Makris, S.
Enabling Seamless Human-Robot Collaboration in Manufacturing Using LLMs Proceedings Article
In: A., Wagner; K., Alexopoulos; S., Makris (Ed.): Lect. Notes Mech. Eng., pp. 81–89, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 21954356 (ISSN); 978-303157495-5 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Collaboration capabilities, Computational Linguistics, Human operator, Human-Robot Collaboration, Industrial research, Industrial robots, Intelligent robots, Language Model, Large language model, large language models, Manufacturing environments, Programming robots, Reality interface, Research papers, Robot programming, User friendly
@inproceedings{gkournelos_enabling_2024,
title = {Enabling Seamless Human-Robot Collaboration in Manufacturing Using LLMs},
author = {C. Gkournelos and C. Konstantinou and P. Angelakis and G. Michalos and S. Makris},
editor = {Wagner A. and Alexopoulos K. and Makris S.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199196139&doi=10.1007%2f978-3-031-57496-2_9&partnerID=40&md5=cd0b33b3c9e9f9e53f1e99882945e134},
doi = {10.1007/978-3-031-57496-2_9},
isbn = {21954356 (ISSN); 978-303157495-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Mech. Eng.},
pages = {81–89},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {In the era of Industry 5.0, there is a growing interest in harnessing the potential of human-robot collaboration (HRC) in manufacturing environments. This research paper focuses on the integration of Large Language Models (LLMs) to augment HRC capabilities, particularly in addressing configuration issues when programming robots to collaborate with human operators. By harnessing the capabilities of LLMs in combination with a user-friendly augmented reality (AR) interface, the proposed approach empowers human operators to seamlessly collaborate with robots, facilitating smooth and efficient assembly processes. This research introduces the CollabAI an AI assistant for task management and natural communication based on a fine-tuned GPT model focusing on collaborative manufacturing. Real-world experiments conducted in two manufacturing settings coming from the automotive and machinery industries. The findings have implications for various industries seeking to increase productivity and foster a new era of efficient and effective collaboration in manufacturing environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Artificial intelligence, Augmented Reality, Collaboration capabilities, Computational Linguistics, Human operator, Human-Robot Collaboration, Industrial research, Industrial robots, Intelligent robots, Language Model, Large language model, large language models, Manufacturing environments, Programming robots, Reality interface, Research papers, Robot programming, User friendly},
pubstate = {published},
tppubtype = {inproceedings}
}