AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Song, T.; Pabst, F.; Eck, U.; Navab, N.
Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2901–2911, 2025, ISSN: 10772626 (ISSN), (Publisher: IEEE Computer Society).
Abstract | Links | BibTeX | Tags: 3D reconstruction, adult, Augmented Reality, Computer graphics, computer interface, echography, female, human, Humans, Imaging, Intelligent robots, Intelligent virtual agents, Language Model, male, Medical robotics, Middle Aged, Mixed reality, Patient Acceptance of Health Care, patient attitude, Patient comfort, procedures, Real-world, Reality visualization, Robotic Ultrasound, Robotics, Three-Dimensional, three-dimensional imaging, Trust and Acceptance, Ultrasonic applications, Ultrasonic equipment, Ultrasonography, Ultrasound probes, User-Computer Interface, Virtual agent, Virtual assistants, Virtual environments, Virtual Reality, Visual languages, Visualization, Young Adult
@article{song_enhancing_2025,
title = {Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations},
author = {T. Song and F. Pabst and U. Eck and N. Navab},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003687673&doi=10.1109%2FTVCG.2025.3549181&partnerID=40&md5=0753cd3c57ac630480a19001cde28319},
doi = {10.1109/TVCG.2025.3549181},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2901–2911},
abstract = {Robotic ultrasound systems have the potential to improve medical diagnostics, but patient acceptance remains a key challenge. To address this, we propose a novel system that combines an AI-based virtual agent, powered by a large language model (LLM), with three mixed reality visualizations aimed at enhancing patient comfort and trust. The LLM enables the virtual assistant to engage in natural, conversational dialogue with patients, answering questions in any format and offering real-time reassurance, creating a more intelligent and reliable interaction. The virtual assistant is animated as controlling the ultrasound probe, giving the impression that the robot is guided by the assistant. The first visualization employs augmented reality (AR), allowing patients to see the real world and the robot with the virtual avatar superimposed. The second visualization is an augmented virtuality (AV) environment, where the real-world body part being scanned is visible, while a 3D Gaussian Splatting reconstruction of the room, excluding the robot, forms the virtual environment. The third is a fully immersive virtual reality (VR) experience, featuring the same 3D reconstruction but entirely virtual, where the patient sees a virtual representation of their body being scanned in a robot-free environment. In this case, the virtual ultrasound probe, mirrors the movement of the probe controlled by the robot, creating a synchronized experience as it touches and moves over the patient's virtual body. We conducted a comprehensive agent-guided robotic ultrasound study with all participants, comparing these visualizations against a standard robotic ultrasound procedure. Results showed significant improvements in patient trust, acceptance, and comfort. Based on these findings, we offer insights into designing future mixed reality visualizations and virtual agents to further enhance patient comfort and acceptance in autonomous medical procedures. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: IEEE Computer Society},
keywords = {3D reconstruction, adult, Augmented Reality, Computer graphics, computer interface, echography, female, human, Humans, Imaging, Intelligent robots, Intelligent virtual agents, Language Model, male, Medical robotics, Middle Aged, Mixed reality, Patient Acceptance of Health Care, patient attitude, Patient comfort, procedures, Real-world, Reality visualization, Robotic Ultrasound, Robotics, Three-Dimensional, three-dimensional imaging, Trust and Acceptance, Ultrasonic applications, Ultrasonic equipment, Ultrasonography, Ultrasound probes, User-Computer Interface, Virtual agent, Virtual assistants, Virtual environments, Virtual Reality, Visual languages, Visualization, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Shi, L.; Gu, Y.; Zheng, Y.; Kameda, S.; Lu, H.
LWD-IUM: A Lightweight Detector for Advancing Robotic Grasp in VR-Based Industrial and Underwater Metaverse Proceedings Article
In: pp. 1384–1391, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331508876 (ISBN).
Abstract | Links | BibTeX | Tags: 3D object, 3D object detection, Deep learning, generative artificial intelligence, Grasping and manipulation, Intelligent robots, Learning systems, Metaverses, Neural Networks, Object Detection, Object recognition, Objects detection, Real- time, Real-time, Robotic grasping, robotic grasping and manipulation, Robotic manipulation, Virtual Reality, Vision transformer, Visual servoing
@inproceedings{shi_lwd-ium_2025,
title = {LWD-IUM: A Lightweight Detector for Advancing Robotic Grasp in VR-Based Industrial and Underwater Metaverse},
author = {L. Shi and Y. Gu and Y. Zheng and S. Kameda and H. Lu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105011354353&doi=10.1109%2FIWCMC65282.2025.11059637&partnerID=40&md5=77aa4cdb0a08a1db5d0027a71403da89},
doi = {10.1109/IWCMC65282.2025.11059637},
isbn = {9798331508876 (ISBN)},
year = {2025},
date = {2025-01-01},
pages = {1384–1391},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In the burgeoning field of virtual reality (VR) metaverse, the sophistication of interactions between robotic agents and their environment has become a critical concern. In this work, we present LWD-IUM, a novel light-weight detector designed to enhance robotic grasp capabilities in the VR metaverse. LWD-IUM applies deep learning techniques to discern and navigate the complex VR metaverse environment, aiding robotic agents in the identification and grasping of objects with high precision and efficiency. The algorithm is constructed with an advanced lightweight neural network structure based on self-attention mechanism that ensures optimal balance between computational cost and performance, making it highly suitable for real-time applications in VR. Evaluation on the KITTI 3D dataset demonstrated real-time detection capabilities (24-30 fps) of LWD-IUM, with its mean average precision (mAP) remaining 80% above standard 3D detectors, even with a 50% parameter reduction. In addition, we show that LWD-IUM outperforms existing models for object detection and grasping tasks through the real environment testing on a Baxter dual-arm collaborative robot. By pioneering advancements in robotic grasp in the VR metaverse, LWD-IUM promotes more immersive and realistic interactions, pushing the boundaries of what's possible in virtual experiences. © 2025 Elsevier B.V., All rights reserved.},
keywords = {3D object, 3D object detection, Deep learning, generative artificial intelligence, Grasping and manipulation, Intelligent robots, Learning systems, Metaverses, Neural Networks, Object Detection, Object recognition, Objects detection, Real- time, Real-time, Robotic grasping, robotic grasping and manipulation, Robotic manipulation, Virtual Reality, Vision transformer, Visual servoing},
pubstate = {published},
tppubtype = {inproceedings}
}
Jayanthy, S.; Selvaganesh, M.; Kumar, S. Sakthi; Sathish, A. Manjunatha; Sabarisan, K. M.; Arasi, T. Senthamil
Generative AI Solution for CNC Machines and Robotics Code Generation Proceedings Article
In: Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331536695 (ISBN).
Abstract | Links | BibTeX | Tags: Adaptive control systems, Adversarial networks, Automated Code Generation, Automatic programming, CNC machine, CNC Machines, CNC system, Codegeneration, Computer aided instruction, Computer control, Computer control systems, E-Learning, Edge computing, Federated learning, Flow control, GANs, Generative pre-trained transformer transformer, GPT Transformers, Industrial research, Industry 4.0, Innovative approaches, Intelligent robots, Learning algorithms, Personnel training, Reinforcement Learning, Reinforcement learnings, Robotic systems, Simulation platform, Smart manufacturing, Virtual Reality
@inproceedings{jayanthy_generative_2025,
title = {Generative AI Solution for CNC Machines and Robotics Code Generation},
author = {S. Jayanthy and M. Selvaganesh and S. Sakthi Kumar and A. Manjunatha Sathish and K. M. Sabarisan and T. Senthamil Arasi},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105011963078&doi=10.1109%2FICCIES63851.2025.11033032&partnerID=40&md5=fb9143cd22dc48ae6c557f722cc2d6ab},
doi = {10.1109/ICCIES63851.2025.11033032},
isbn = {9798331536695 (ISBN)},
year = {2025},
date = {2025-01-01},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {The advent of Industry 4.0 has revolutionized the manufacturing landscape, driving significant advancements in automation and intelligence. This study introduces an innovative approach to automated code generation for CNC and robotic systems, leveraging Generative Adversarial Networks (GANs) and GPT(Generative Pre-trained Transformer) Transformers. These AI models enable precise and optimized code creation, minimizing manual errors. Adaptive process control, achieved through Reinforcement Learning (RL), allows real-time adjustments to operational parameters, enhancing performance in dynamic environments. The incorporation of natural language processing through Transformer models facilitates intuitive operator interactions via user-friendly interfaces. Immersive Virtual Reality (VR) technologies provide high-fidelity simulation and training platforms for realistic testing and control. Additionally, collaborative learning mechanisms, achieved through Federated Learning and Edge-cloud computing, support continuous improvement and scalable deployment. Impressive outcomes were attained by the system, including 90.5% training efficiency, 98.7% coding accuracy, 95.2% adaptability, and 93.4% operator satisfaction. Experimental results validate the system's superior accuracy, adaptability, and user-centric design, showcasing its potential to revolutionize manufacturing processes. This research sets a new benchmark for intelligent, efficient, and scalable automation in the Industry 4.0 era, paving the way for transformative innovations in smart manufacturing. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Adaptive control systems, Adversarial networks, Automated Code Generation, Automatic programming, CNC machine, CNC Machines, CNC system, Codegeneration, Computer aided instruction, Computer control, Computer control systems, E-Learning, Edge computing, Federated learning, Flow control, GANs, Generative pre-trained transformer transformer, GPT Transformers, Industrial research, Industry 4.0, Innovative approaches, Intelligent robots, Learning algorithms, Personnel training, Reinforcement Learning, Reinforcement learnings, Robotic systems, Simulation platform, Smart manufacturing, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Gkournelos, C.; Konstantinou, C.; Angelakis, P.; Michalos, G.; Makris, S.
Enabling Seamless Human-Robot Collaboration in Manufacturing Using LLMs Proceedings Article
In: A., Wagner; K., Alexopoulos; S., Makris (Ed.): Lect. Notes Mech. Eng., pp. 81–89, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 21954356 (ISSN); 978-303157495-5 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Collaboration capabilities, Computational Linguistics, Human operator, Human-Robot Collaboration, Industrial research, Industrial robots, Intelligent robots, Language Model, Large language model, large language models, Manufacturing environments, Programming robots, Reality interface, Research papers, Robot programming, User friendly
@inproceedings{gkournelos_enabling_2024,
title = {Enabling Seamless Human-Robot Collaboration in Manufacturing Using LLMs},
author = {C. Gkournelos and C. Konstantinou and P. Angelakis and G. Michalos and S. Makris},
editor = {Wagner A. and Alexopoulos K. and Makris S.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199196139&doi=10.1007%2f978-3-031-57496-2_9&partnerID=40&md5=cd0b33b3c9e9f9e53f1e99882945e134},
doi = {10.1007/978-3-031-57496-2_9},
isbn = {21954356 (ISSN); 978-303157495-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Mech. Eng.},
pages = {81–89},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {In the era of Industry 5.0, there is a growing interest in harnessing the potential of human-robot collaboration (HRC) in manufacturing environments. This research paper focuses on the integration of Large Language Models (LLMs) to augment HRC capabilities, particularly in addressing configuration issues when programming robots to collaborate with human operators. By harnessing the capabilities of LLMs in combination with a user-friendly augmented reality (AR) interface, the proposed approach empowers human operators to seamlessly collaborate with robots, facilitating smooth and efficient assembly processes. This research introduces the CollabAI an AI assistant for task management and natural communication based on a fine-tuned GPT model focusing on collaborative manufacturing. Real-world experiments conducted in two manufacturing settings coming from the automotive and machinery industries. The findings have implications for various industries seeking to increase productivity and foster a new era of efficient and effective collaboration in manufacturing environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Artificial intelligence, Augmented Reality, Collaboration capabilities, Computational Linguistics, Human operator, Human-Robot Collaboration, Industrial research, Industrial robots, Intelligent robots, Language Model, Large language model, large language models, Manufacturing environments, Programming robots, Reality interface, Research papers, Robot programming, User friendly},
pubstate = {published},
tppubtype = {inproceedings}
}
Peretti, A.; Mazzola, M.; Capra, L.; Piazzola, M.; Carlevaro, C.
Seamless Human-Robot Interaction Through a Distributed Zero-Trust Architecture and Advanced User Interfaces Proceedings Article
In: C., Secchi; L., Marconi (Ed.): Springer. Proc. Adv. Robot., pp. 92–95, Springer Nature, 2024, ISBN: 25111256 (ISSN); 978-303176427-1 (ISBN).
Abstract | Links | BibTeX | Tags: Advanced user interfaces, Digital Twins, HRC, Human Robot Interaction, Human-Robot Collaboration, Humans-robot interactions, Industrial robots, Industry 4.0, Intelligent robots, Interaction platform, Language Model, Large language model, LLM, Problem oriented languages, Robot Operating System, Robot operating system 2, Robot-robot collaboration, ROS2, RRC, Wages, XR, ZTA
@inproceedings{peretti_seamless_2024,
title = {Seamless Human-Robot Interaction Through a Distributed Zero-Trust Architecture and Advanced User Interfaces},
author = {A. Peretti and M. Mazzola and L. Capra and M. Piazzola and C. Carlevaro},
editor = {Secchi C. and Marconi L.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216090556&doi=10.1007%2f978-3-031-76428-8_18&partnerID=40&md5=9f58281f8a8c034fb45fed610ce64bd2},
doi = {10.1007/978-3-031-76428-8_18},
isbn = {25111256 (ISSN); 978-303176427-1 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Springer. Proc. Adv. Robot.},
volume = {33 SPAR},
pages = {92–95},
publisher = {Springer Nature},
abstract = {The proposed work presents a novel interaction platform designed to address the shortage of skilled workers in the labor market, facilitating the seamless integration of robotics and advanced user interfaces such as eXtended Reality (XR) to optimize Human-Robot Collaboration (HRC) as well as Robot-Robot Collaboration (RRC) in an Industry 4.0 scenario. One of the most challenging situations is to optimize and simplify the collaborations of humans and robots to decrease or avoid system slowdowns, blocks, or dangerous situations for both users and robots. The advent of the LLMs (Large Language Model) have been breakthrough the whole IT environment because they perform well in different scenario from human text generation to autonomous systems management. Due to their malleability, LLMs have a primary role for Human-Robot collaboration processes. For this reason, the platform comprises three key technical components: a distributed zero-trust architecture, a virtual avatar, and digital twins of robots powered by the Robot Operating System 2 (ROS2) platform. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Advanced user interfaces, Digital Twins, HRC, Human Robot Interaction, Human-Robot Collaboration, Humans-robot interactions, Industrial robots, Industry 4.0, Intelligent robots, Interaction platform, Language Model, Large language model, LLM, Problem oriented languages, Robot Operating System, Robot operating system 2, Robot-robot collaboration, ROS2, RRC, Wages, XR, ZTA},
pubstate = {published},
tppubtype = {inproceedings}
}
Sonawani, S.; Weigend, F.; Amor, H. B.
SiSCo: Signal Synthesis for Effective Human-Robot Communication Via Large Language Models Proceedings Article
In: IEEE Int Conf Intell Rob Syst, pp. 7107–7114, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 21530858 (ISSN); 979-835037770-5 (ISBN).
Abstract | Links | BibTeX | Tags: Communications channels, Extensive resources, Human engineering, Human Robot Interaction, Human-Robot Collaboration, Human-robot communication, Humans-robot interactions, Industrial robots, Intelligent robots, Language Model, Man machine systems, Microrobots, Robust communication, Signal synthesis, Specialized knowledge, Visual communication, Visual cues, Visual languages
@inproceedings{sonawani_sisco_2024,
title = {SiSCo: Signal Synthesis for Effective Human-Robot Communication Via Large Language Models},
author = {S. Sonawani and F. Weigend and H. B. Amor},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216466596&doi=10.1109%2fIROS58592.2024.10802561&partnerID=40&md5=ccd14b4f0b5d527b179394dffd4e2c73},
doi = {10.1109/IROS58592.2024.10802561},
isbn = {21530858 (ISSN); 979-835037770-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {IEEE Int Conf Intell Rob Syst},
pages = {7107–7114},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Effective human-robot collaboration hinges on robust communication channels, with visual signaling playing a pivotal role due to its intuitive appeal. Yet, the creation of visually intuitive cues often demands extensive resources and specialized knowledge. The emergence of Large Language Models (LLMs) offers promising avenues for enhancing human-robot interactions and revolutionizing the way we generate context-aware visual cues. To this end, we introduce SiSCo-a novel framework that combines the computational power of LLMs with mixed-reality technologies to streamline the creation of visual cues for human-robot collaboration. Our results show that SiSCo improves the efficiency of communication in human-robot teaming tasks, reducing task completion time by approximately 73% and increasing task success rates by 18% compared to baseline natural language signals. Additionally, SiSCo reduces cognitive load for participants by 46%, as measured by the NASA-TLX subscale, and receives above-average user ratings for on-the-fly signals generated for unseen objects. To encourage further development and broader community engagement, we provide full access to SiSCo's implementation and related materials on our GitHub repository.1 © 2024 IEEE.},
keywords = {Communications channels, Extensive resources, Human engineering, Human Robot Interaction, Human-Robot Collaboration, Human-robot communication, Humans-robot interactions, Industrial robots, Intelligent robots, Language Model, Man machine systems, Microrobots, Robust communication, Signal synthesis, Specialized knowledge, Visual communication, Visual cues, Visual languages},
pubstate = {published},
tppubtype = {inproceedings}
}