AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Bao, Y.; Gao, N.; Weng, D.; Chen, J.; Tian, Z.
MuseGesture: A Framework for Gesture Synthesis by Virtual Agents in VR Museum Guides Proceedings Article
In: U., Eck; M., Sra; J., Stefanucci; M., Sugimoto; M., Tatzgern; I., Williams (Ed.): Proc. - IEEE Int. Symp. Mixed Augment. Real. Adjunct, ISMAR-Adjunct, pp. 337–338, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833150691-9 (ISBN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Embeddings, Gesture Generation, Intelligent Agents, Intelligent systems, Intelligent virtual agents, Language generation, Language Model, Large language model, large language models, Museum guide, Reinforcement Learning, Reinforcement learnings, Robust language understanding, Virtual agent, Virtual Agents, Virtual environments, Virtual reality museum guide, VR Museum Guides
@inproceedings{bao_musegesture_2024,
title = {MuseGesture: A Framework for Gesture Synthesis by Virtual Agents in VR Museum Guides},
author = {Y. Bao and N. Gao and D. Weng and J. Chen and Z. Tian},
editor = {Eck U. and Sra M. and Stefanucci J. and Sugimoto M. and Tatzgern M. and Williams I.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214385900&doi=10.1109%2fISMAR-Adjunct64951.2024.00079&partnerID=40&md5=e71ffc28e299597557034259aab50641},
doi = {10.1109/ISMAR-Adjunct64951.2024.00079},
isbn = {979-833150691-9 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Symp. Mixed Augment. Real. Adjunct, ISMAR-Adjunct},
pages = {337–338},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This paper presents an innovative framework named MuseGesture, designed to generate contextually adaptive gestures for virtual agents in Virtual Reality (VR) museums. The framework leverages the robust language understanding and generation capabilities of Large Language Models (LLMs) to parse tour narration texts and generate corresponding explanatory gestures. Through reinforcement learning and adversarial skill embeddings, the framework also generates guiding gestures tailored to the virtual museum environment, integrating both gesture types using conditional motion interpolation methods. Experimental results and user studies demonstrate that this approach effectively enables voice-command-controlled virtual guide gestures, offering a novel intelligent guiding system solution that enhances the interactive experience in VR museum environments. © 2024 IEEE.},
keywords = {Adversarial machine learning, Embeddings, Gesture Generation, Intelligent Agents, Intelligent systems, Intelligent virtual agents, Language generation, Language Model, Large language model, large language models, Museum guide, Reinforcement Learning, Reinforcement learnings, Robust language understanding, Virtual agent, Virtual Agents, Virtual environments, Virtual reality museum guide, VR Museum Guides},
pubstate = {published},
tppubtype = {inproceedings}
}