AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Liu, G.; Du, H.; Wang, J.; Niyato, D.; Kim, D. I.
Contract-Inspired Contest Theory for Controllable Image Generation in Mobile Edge Metaverse Journal Article
In: IEEE Transactions on Mobile Computing, 2025, ISSN: 15361233 (ISSN).
Abstract | Links | BibTeX | Tags: Contest Theory, Deep learning, Deep reinforcement learning, Diffusion Model, Generative adversarial networks, Generative AI, High quality, Image generation, Image generations, Immersive technologies, Metaverses, Mobile edge computing, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Semantic data, Virtual addresses, Virtual environments, Virtual Reality
@article{liu_contract-inspired_2025,
title = {Contract-Inspired Contest Theory for Controllable Image Generation in Mobile Edge Metaverse},
author = {G. Liu and H. Du and J. Wang and D. Niyato and D. I. Kim},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000066834&doi=10.1109%2fTMC.2025.3550815&partnerID=40&md5=3cb5a2143b9ce4ca7f931a60f1bf239c},
doi = {10.1109/TMC.2025.3550815},
issn = {15361233 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Mobile Computing},
abstract = {The rapid advancement of immersive technologies has propelled the development of the Metaverse, where the convergence of virtual and physical realities necessitates the generation of high-quality, photorealistic images to enhance user experience. However, generating these images, especially through Generative Diffusion Models (GDMs), in mobile edge computing environments presents significant challenges due to the limited computing resources of edge devices and the dynamic nature of wireless networks. This paper proposes a novel framework that integrates contract-inspired contest theory, Deep Reinforcement Learning (DRL), and GDMs to optimize image generation in these resource-constrained environments. The framework addresses the critical challenges of resource allocation and semantic data transmission quality by incentivizing edge devices to efficiently transmit high-quality semantic data, which is essential for creating realistic and immersive images. The use of contest and contract theory ensures that edge devices are motivated to allocate resources effectively, while DRL dynamically adjusts to network conditions, optimizing the overall image generation process. Experimental results demonstrate that the proposed approach not only improves the quality of generated images but also achieves superior convergence speed and stability compared to traditional methods. This makes the framework particularly effective for optimizing complex resource allocation tasks in mobile edge Metaverse applications, offering enhanced performance and efficiency in creating immersive virtual environments. © 2002-2012 IEEE.},
keywords = {Contest Theory, Deep learning, Deep reinforcement learning, Diffusion Model, Generative adversarial networks, Generative AI, High quality, Image generation, Image generations, Immersive technologies, Metaverses, Mobile edge computing, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Semantic data, Virtual addresses, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Zhang, Z.; Wang, J.; Chen, J.; Fang, Z.; Jiang, C.; Han, Z.
A Priority-Aware AI-Generated Content Resource Allocation Method for Multi-UAV Aided Metaverse Proceedings Article
In: IEEE Wireless Commun. Networking Conf. WCNC, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 15253511 (ISSN); 979-835036836-9 (ISBN).
Abstract | Links | BibTeX | Tags: Aerial vehicle, AI-generated content, AI-generated content (AIGC), Allocation methods, Content-resources, Diffusion Model, Drones, Metaverse, Metaverses, Priority-aware, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Target drones, Unmanned aerial vehicle, Unmanned aerial vehicle (UAV)
@inproceedings{zhang_priority-aware_2025,
title = {A Priority-Aware AI-Generated Content Resource Allocation Method for Multi-UAV Aided Metaverse},
author = {Z. Zhang and J. Wang and J. Chen and Z. Fang and C. Jiang and Z. Han},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105006408540&doi=10.1109%2fWCNC61545.2025.10978443&partnerID=40&md5=69937c6fa9be1a038b28e7884dfe586b},
doi = {10.1109/WCNC61545.2025.10978443},
isbn = {15253511 (ISSN); 979-835036836-9 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IEEE Wireless Commun. Networking Conf. WCNC},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {With the advancement of large model technologies, AI -generated content is gradually emerging as a mainstream method for content creation. The metaverse, as a key application scenario for the next-generation communication technologies, heavily depends on advanced content generation technologies. Nevertheless, the diverse types of metaverse applications and their stringent real-time requirements constrain the full potential of AIGC technologies within this environment. In order to tackle with this problem, we construct a priority-aware multi-UAV aided metaverse system and formulate it as a Markov decision process (MDP). We propose a diffusion-based reinforcement learning algorithm to solve the resource allocation problem and demonstrate its superiority through enough comparison and ablation experiments. © 2025 IEEE.},
keywords = {Aerial vehicle, AI-generated content, AI-generated content (AIGC), Allocation methods, Content-resources, Diffusion Model, Drones, Metaverse, Metaverses, Priority-aware, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Target drones, Unmanned aerial vehicle, Unmanned aerial vehicle (UAV)},
pubstate = {published},
tppubtype = {inproceedings}
}
Zhang, Z.; Wang, J.; Chen, J.; Fu, H.; Tong, Z.; Jiang, C.
Diffusion-Based Reinforcement Learning for Cooperative Offloading and Resource Allocation in Multi-UAV Assisted Edge-Enabled Metaverse Journal Article
In: IEEE Transactions on Vehicular Technology, 2025, ISSN: 00189545 (ISSN).
Abstract | Links | BibTeX | Tags: Aerial vehicle, Content creation, Content services, Contrastive Learning, Decision making, Deep learning, Deep reinforcement learning, Diffusion Model, Global industry, Helicopter services, Markov processes, Metaverse, Metaverses, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Typical application, Unmanned aerial vehicle, Unmanned aerial vehicle (UAV), Unmanned aerial vehicles (UAV)
@article{zhang_diffusion-based_2025,
title = {Diffusion-Based Reinforcement Learning for Cooperative Offloading and Resource Allocation in Multi-UAV Assisted Edge-Enabled Metaverse},
author = {Z. Zhang and J. Wang and J. Chen and H. Fu and Z. Tong and C. Jiang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85219108203&doi=10.1109%2fTVT.2025.3544879&partnerID=40&md5=fdbe1554f6cf7d47d4bbbb73b4b0d487},
doi = {10.1109/TVT.2025.3544879},
issn = {00189545 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Vehicular Technology},
abstract = {As one of the typical applications of 6G, the metaverse, with its superior immersion and diversified services, has garnered widespread attention from both the global industry and academia. Simultaneously, the emergence of AI-generated content (AIGC), exemplified by ChatGPT, has revolutionized the mean of content creation in the metaverse. Providing meataverse users with diversified AIGC services anytime and anywhere to meet the demand for immersive and blended virtual-real experiences in the physical world has become a major challenge in the development of the metaverse. Considering the flexibility and mobility of unmanned aerial vehicles (UAVs), we innovatively incorporate multiple UAVs as one of the AIGC service providers and construct a multi-UAV assisted edge-enabled metaverse system in the context of AIGC-as-a-Service (AaaS) scenario. To solve the complex resource management and allocation problem in the aforementioned system, we formulate it as a Markov decision process (MDP) and propose utilizing the generative capabilities of the diffusion model in combination with the robust decision-making abilities of reinforcement learning to tackle these issues. In order to substantiate the efficacy of the proposed diffusion-based reinforcement learning framework, we propose a novel diffusion-based soft actor-critic algorithm for metaverse (Meta-DSAC). Subsequently, a series of experiments are executed and the simulation results empirically validate the proposed algorithm's comparative advantages of the ability to provide stable and substantial long-term rewards, as well as the enhanced capacity to model complex environment. © 2025 IEEE.},
keywords = {Aerial vehicle, Content creation, Content services, Contrastive Learning, Decision making, Deep learning, Deep reinforcement learning, Diffusion Model, Global industry, Helicopter services, Markov processes, Metaverse, Metaverses, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Typical application, Unmanned aerial vehicle, Unmanned aerial vehicle (UAV), Unmanned aerial vehicles (UAV)},
pubstate = {published},
tppubtype = {article}
}
2024
Ding, P.; Liu, J.; Sun, M.; Li, L.; Liu, H.
Enhancing Computational Processing Performance for Generative AI Large Models with Autonomous Decision-Making in Metaverse Applications Proceedings Article
In: Proc. - IEEE Int. Conf. Metaverse Comput., Netw., Appl., MetaCom, pp. 253–258, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833151599-7 (ISBN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, AGI (Artificial General Intelligence), Artificial general intelligence, Artificial general intelligences, Autonomous decision, Autonomous Decision-Making, Data assimilation, Data integration, Decisions makings, Digital Twin Technology, Emotion Recognition, Generative adversarial networks, Generative AI large model, Generative AI Large Models, Large models, Metaverse, Metaverses, Model Acceleration, Model Compression, Multi agent systems, Multi-agent systems, Multi-modal data, Multi-Modal Data Integration, Multiagent systems (MASs), Reinforcement Learning, Reinforcement learnings, Spatio-temporal data
@inproceedings{ding_enhancing_2024,
title = {Enhancing Computational Processing Performance for Generative AI Large Models with Autonomous Decision-Making in Metaverse Applications},
author = {P. Ding and J. Liu and M. Sun and L. Li and H. Liu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211489063&doi=10.1109%2fMetaCom62920.2024.00048&partnerID=40&md5=ae085a7d90b12c9090f5bf7a274bc7ce},
doi = {10.1109/MetaCom62920.2024.00048},
isbn = {979-833151599-7 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Conf. Metaverse Comput., Netw., Appl., MetaCom},
pages = {253–258},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {We explore how to enhance the computational processing performance for generative AI large models with autonomous decision-making in metaverse applications. We first introduce the relationship between AI large models and the Metaverse. We elaborate on the application scenarios of generative AI large models in Metaverse, including real-time weather simulation, embodied intelligence of agents, dynamic environment interaction, and user emotion recognition. We then propose the method of Multi-Dimensional Optimization Generation Framework (MDOGF) to improve computational processing performance. The experiment results show great improvement in computational processing performance. © 2024 IEEE.},
keywords = {Adversarial machine learning, AGI (Artificial General Intelligence), Artificial general intelligence, Artificial general intelligences, Autonomous decision, Autonomous Decision-Making, Data assimilation, Data integration, Decisions makings, Digital Twin Technology, Emotion Recognition, Generative adversarial networks, Generative AI large model, Generative AI Large Models, Large models, Metaverse, Metaverses, Model Acceleration, Model Compression, Multi agent systems, Multi-agent systems, Multi-modal data, Multi-Modal Data Integration, Multiagent systems (MASs), Reinforcement Learning, Reinforcement learnings, Spatio-temporal data},
pubstate = {published},
tppubtype = {inproceedings}
}
Bao, Y.; Gao, N.; Weng, D.; Chen, J.; Tian, Z.
MuseGesture: A Framework for Gesture Synthesis by Virtual Agents in VR Museum Guides Proceedings Article
In: U., Eck; M., Sra; J., Stefanucci; M., Sugimoto; M., Tatzgern; I., Williams (Ed.): Proc. - IEEE Int. Symp. Mixed Augment. Real. Adjunct, ISMAR-Adjunct, pp. 337–338, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833150691-9 (ISBN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Embeddings, Gesture Generation, Intelligent Agents, Intelligent systems, Intelligent virtual agents, Language generation, Language Model, Large language model, large language models, Museum guide, Reinforcement Learning, Reinforcement learnings, Robust language understanding, Virtual agent, Virtual Agents, Virtual environments, Virtual reality museum guide, VR Museum Guides
@inproceedings{bao_musegesture_2024,
title = {MuseGesture: A Framework for Gesture Synthesis by Virtual Agents in VR Museum Guides},
author = {Y. Bao and N. Gao and D. Weng and J. Chen and Z. Tian},
editor = {Eck U. and Sra M. and Stefanucci J. and Sugimoto M. and Tatzgern M. and Williams I.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214385900&doi=10.1109%2fISMAR-Adjunct64951.2024.00079&partnerID=40&md5=e71ffc28e299597557034259aab50641},
doi = {10.1109/ISMAR-Adjunct64951.2024.00079},
isbn = {979-833150691-9 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Symp. Mixed Augment. Real. Adjunct, ISMAR-Adjunct},
pages = {337–338},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This paper presents an innovative framework named MuseGesture, designed to generate contextually adaptive gestures for virtual agents in Virtual Reality (VR) museums. The framework leverages the robust language understanding and generation capabilities of Large Language Models (LLMs) to parse tour narration texts and generate corresponding explanatory gestures. Through reinforcement learning and adversarial skill embeddings, the framework also generates guiding gestures tailored to the virtual museum environment, integrating both gesture types using conditional motion interpolation methods. Experimental results and user studies demonstrate that this approach effectively enables voice-command-controlled virtual guide gestures, offering a novel intelligent guiding system solution that enhances the interactive experience in VR museum environments. © 2024 IEEE.},
keywords = {Adversarial machine learning, Embeddings, Gesture Generation, Intelligent Agents, Intelligent systems, Intelligent virtual agents, Language generation, Language Model, Large language model, large language models, Museum guide, Reinforcement Learning, Reinforcement learnings, Robust language understanding, Virtual agent, Virtual Agents, Virtual environments, Virtual reality museum guide, VR Museum Guides},
pubstate = {published},
tppubtype = {inproceedings}
}
Zheng, P.; Li, C.; Fan, J.; Wang, L.
In: CIRP Annals, vol. 73, no. 1, pp. 341–344, 2024, ISSN: 00078506 (ISSN).
Abstract | Links | BibTeX | Tags: Collaboration task, Collaborative manufacturing, Deep learning, Helmet mounted displays, Human robots, Human-centric, Human-guided robot learning, Human-Robot Collaboration, Interface states, Manipulators, Manufacturing system, Manufacturing tasks, Mixed reality, Mixed reality head-mounted displays, Reinforcement Learning, Reinforcement learnings, Robot vision, Smart manufacturing
@article{zheng_vision-language-guided_2024,
title = {A vision-language-guided and deep reinforcement learning-enabled approach for unstructured human-robot collaborative manufacturing task fulfilment},
author = {P. Zheng and C. Li and J. Fan and L. Wang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190754943&doi=10.1016%2fj.cirp.2024.04.003&partnerID=40&md5=59c453e1931e912472e76b86b77a881b},
doi = {10.1016/j.cirp.2024.04.003},
issn = {00078506 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {CIRP Annals},
volume = {73},
number = {1},
pages = {341–344},
abstract = {Human-Robot Collaboration (HRC) has emerged as a pivot in contemporary human-centric smart manufacturing scenarios. However, the fulfilment of HRC tasks in unstructured scenes brings many challenges to be overcome. In this work, mixed reality head-mounted display is modelled as an effective data collection, communication, and state representation interface/tool for HRC task settings. By integrating vision-language cues with large language model, a vision-language-guided HRC task planning approach is firstly proposed. Then, a deep reinforcement learning-enabled mobile manipulator motion control policy is generated to fulfil HRC task primitives. Its feasibility is demonstrated in several HRC unstructured manufacturing tasks with comparative results. © 2024 The Author(s)},
keywords = {Collaboration task, Collaborative manufacturing, Deep learning, Helmet mounted displays, Human robots, Human-centric, Human-guided robot learning, Human-Robot Collaboration, Interface states, Manipulators, Manufacturing system, Manufacturing tasks, Mixed reality, Mixed reality head-mounted displays, Reinforcement Learning, Reinforcement learnings, Robot vision, Smart manufacturing},
pubstate = {published},
tppubtype = {article}
}