AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Zhu, X. T.; Cheerman, H.; Cheng, M.; Kiami, S. R.; Chukoskie, L.; McGivney, E.
Designing VR Simulation System for Clinical Communication Training with LLMs-Based Embodied Conversational Agents Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2025, ISBN: 979-840071395-8 (ISBN).
Abstract | Links | BibTeX | Tags: Clinical communications, Clinical Simulation, Communications training, Curricula, Embodied conversational agent, Embodied Conversational Agents, Health professions, Intelligent virtual agents, Language Model, Medical education, Model-based OPC, Patient simulators, Personnel training, Students, Teaching, User centered design, Virtual environments, Virtual Reality, VR simulation, VR simulation systems
@inproceedings{zhu_designing_2025,
title = {Designing VR Simulation System for Clinical Communication Training with LLMs-Based Embodied Conversational Agents},
author = {X. T. Zhu and H. Cheerman and M. Cheng and S. R. Kiami and L. Chukoskie and E. McGivney},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005754066&doi=10.1145%2f3706599.3719693&partnerID=40&md5=4468fbd54b43d6779259300afd08632e},
doi = {10.1145/3706599.3719693},
isbn = {979-840071395-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {VR simulation in Health Professions (HP) education demonstrates huge potential, but fixed learning content with little customization limits its application beyond lab environments. To address these limitations in the context of VR for patient communication training, we conducted a user-centered study involving semi-structured interviews with advanced HP students to understand their challenges in clinical communication training and perceptions of VR-based solutions. From this, we derived design insights emphasizing the importance of realistic scenarios, simple interactions, and unpredictable dialogues. Building on these insights, we developed the Virtual AI Patient Simulator (VAPS), a novel VR system powered by Large Language Models (LLMs) and Embodied Conversational Agents (ECAs), supporting dynamic and customizable patient interactions for immersive learning. We also provided an example of how clinical professors could use user-friendly design forms to create personalized scenarios that align with course objectives in VAPS and discuss future implications of integrating AI-driven technologies into VR education. © 2025 Copyright held by the owner/author(s).},
keywords = {Clinical communications, Clinical Simulation, Communications training, Curricula, Embodied conversational agent, Embodied Conversational Agents, Health professions, Intelligent virtual agents, Language Model, Medical education, Model-based OPC, Patient simulators, Personnel training, Students, Teaching, User centered design, Virtual environments, Virtual Reality, VR simulation, VR simulation systems},
pubstate = {published},
tppubtype = {inproceedings}
}