AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Behravan, M.; Haghani, M.; Gračanin, D.
Transcending Dimensions Using Generative AI: Real-Time 3D Model Generation in Augmented Reality Proceedings Article
In: J.Y.C., Chen; G., Fragomeni (Ed.): Lect. Notes Comput. Sci., pp. 13–32, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303193699-9 (ISBN).
Abstract | Links | BibTeX | Tags: 3D Model Generation, 3D modeling, 3D models, 3d-modeling, Augmented Reality, Generative AI, Image-to-3D conversion, Model generation, Object Detection, Object recognition, Objects detection, Real- time, Specialized software, Technical expertise, Three dimensional computer graphics, Usability engineering
@inproceedings{behravan_transcending_2025,
title = {Transcending Dimensions Using Generative AI: Real-Time 3D Model Generation in Augmented Reality},
author = {M. Behravan and M. Haghani and D. Gračanin},
editor = {Chen J.Y.C. and Fragomeni G.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007690904&doi=10.1007%2f978-3-031-93700-2_2&partnerID=40&md5=1c4d643aad88d08cbbc9dd2c02413f10},
doi = {10.1007/978-3-031-93700-2_2},
isbn = {03029743 (ISSN); 978-303193699-9 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15788 LNCS},
pages = {13–32},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Traditional 3D modeling requires technical expertise, specialized software, and time-intensive processes, making it inaccessible for many users. Our research aims to lower these barriers by combining generative AI and augmented reality (AR) into a cohesive system that allows users to easily generate, manipulate, and interact with 3D models in real time, directly within AR environments. Utilizing cutting-edge AI models like Shap-E, we address the complex challenges of transforming 2D images into 3D representations in AR environments. Key challenges such as object isolation, handling intricate backgrounds, and achieving seamless user interaction are tackled through advanced object detection methods, such as Mask R-CNN. Evaluation results from 35 participants reveal an overall System Usability Scale (SUS) score of 69.64, with participants who engaged with AR/VR technologies more frequently rating the system significantly higher, at 80.71. This research is particularly relevant for applications in gaming, education, and AR-based e-commerce, offering intuitive, model creation for users without specialized skills. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {3D Model Generation, 3D modeling, 3D models, 3d-modeling, Augmented Reality, Generative AI, Image-to-3D conversion, Model generation, Object Detection, Object recognition, Objects detection, Real- time, Specialized software, Technical expertise, Three dimensional computer graphics, Usability engineering},
pubstate = {published},
tppubtype = {inproceedings}
}
Traditional 3D modeling requires technical expertise, specialized software, and time-intensive processes, making it inaccessible for many users. Our research aims to lower these barriers by combining generative AI and augmented reality (AR) into a cohesive system that allows users to easily generate, manipulate, and interact with 3D models in real time, directly within AR environments. Utilizing cutting-edge AI models like Shap-E, we address the complex challenges of transforming 2D images into 3D representations in AR environments. Key challenges such as object isolation, handling intricate backgrounds, and achieving seamless user interaction are tackled through advanced object detection methods, such as Mask R-CNN. Evaluation results from 35 participants reveal an overall System Usability Scale (SUS) score of 69.64, with participants who engaged with AR/VR technologies more frequently rating the system significantly higher, at 80.71. This research is particularly relevant for applications in gaming, education, and AR-based e-commerce, offering intuitive, model creation for users without specialized skills. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.