AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2022
Casoria, Luigi; Gallo, Luigi; Caggianese, Giuseppe
Safeguarding Face-To-Face Communication in Augmented Reality: An Adaptive Interface Proceedings Article
In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 127–132, IEEE, 2022, ISBN: 978-1-66548-574-6.
Abstract | Links | BibTeX | Tags: Adaptive interface, Augmented Reality, Data visualization, Mobile computing, Patient monitoring, Ubiquitous computing, User interface
@inproceedings{casoriaSafeguardingFaceToFaceCommunication2022,
title = {Safeguarding Face-To-Face Communication in Augmented Reality: An Adaptive Interface},
author = { Luigi Casoria and Luigi Gallo and Giuseppe Caggianese},
doi = {10.1109/MetroXRAINE54828.2022.9967661},
isbn = {978-1-66548-574-6},
year = {2022},
date = {2022-10-01},
urldate = {2023-03-15},
booktitle = {2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)},
pages = {127--132},
publisher = {IEEE},
abstract = {Recent advances in wearable augmented reality devices foster the vision of ubiquitous interaction in an immersive, digitally augmented, physical world. Assuming that such devices could one day replace smartphones for accessing information, creating interfaces safeguarding face-to-face communication is challenging. This work presents the design of an interface that adapts the information visualisation to the presence of a possible interlocutor while allowing a high level of user control. The aim was to define an interface for wearable devices adaptive to interactions coming from the surrounding environment and expressly thought for application domains in which it will be necessary to continuously monitor information. For instance, those applications that require monitoring patient data in medical applications or the progress of a production process in an industrial environment. We focused on human-to-human communication, minimising the use of mid-air interaction to hide the synthetic information that might interrupt the conversation flow. Two different visualisation modalities allowing the coexistence of real and virtual worlds are proposed and evaluated in a preliminary study with six participants who showed a generalised appreciation for the solution which maximises the display of information requiring less user intervention.},
keywords = {Adaptive interface, Augmented Reality, Data visualization, Mobile computing, Patient monitoring, Ubiquitous computing, User interface},
pubstate = {published},
tppubtype = {inproceedings}
}
Casoria, Luigi; Gallo, Luigi; Caggianese, Giuseppe
Safeguarding Face-To-Face Communication in Augmented Reality: An Adaptive Interface Proceedings Article
In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 127–132, IEEE, 2022, ISBN: 978-1-66548-574-6, (event-place: Rome, Italy).
Abstract | Links | BibTeX | Tags: Adaptive interface, Augmented Reality, Data visualization, Mobile computing, Patient monitoring, Ubiquitous computing, User interface
@inproceedings{casoria_safeguarding_2022,
title = {Safeguarding Face-To-Face Communication in Augmented Reality: An Adaptive Interface},
author = {Luigi Casoria and Luigi Gallo and Giuseppe Caggianese},
url = {https://ieeexplore.ieee.org/document/9967661/},
doi = {10.1109/MetroXRAINE54828.2022.9967661},
isbn = {978-1-66548-574-6},
year = {2022},
date = {2022-10-01},
urldate = {2023-03-15},
booktitle = {2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)},
pages = {127–132},
publisher = {IEEE},
abstract = {Recent advances in wearable augmented reality devices foster the vision of ubiquitous interaction in an immersive, digitally augmented, physical world. Assuming that such devices could one day replace smartphones for accessing information, creating interfaces safeguarding face-to-face communication is challenging. This work presents the design of an interface that adapts the information visualisation to the presence of a possible interlocutor while allowing a high level of user control. The aim was to define an interface for wearable devices adaptive to interactions coming from the surrounding environment and expressly thought for application domains in which it will be necessary to continuously monitor information. For instance, those applications that require monitoring patient data in medical applications or the progress of a production process in an industrial environment. We focused on human-to-human communication, minimising the use of mid-air interaction to hide the synthetic information that might interrupt the conversation flow. Two different visualisation modalities allowing the coexistence of real and virtual worlds are proposed and evaluated in a preliminary study with six participants who showed a generalised appreciation for the solution which maximises the display of information requiring less user intervention.},
note = {event-place: Rome, Italy},
keywords = {Adaptive interface, Augmented Reality, Data visualization, Mobile computing, Patient monitoring, Ubiquitous computing, User interface},
pubstate = {published},
tppubtype = {inproceedings}
}
2020
Scianna, Andrea; Gaglio, Giuseppe Fulvio; Grima, Reuben; Guardia, Marcello La
THE VIRTUALIZATION of CH for HISTORICAL RECONSTRUCTION: The AR FRUITION of the FOUNTAIN of ST. GEORGE SQUARE in VALLETTA (MALTA) Proceedings Article
In: K., Morley J. Ellul C. Wong (Ed.): International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 143–149, International Society for Photogrammetry and Remote Sensing, 2020, (Issue: 4/W1).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D Modelling, Archaeological Site, Augmented Reality, Complex environments, Cultural heritage, Cultural heritages, Data visualization, Digital Photogrammetry, Fountains, Historical Reconstruction, Sensor sensitivity, Surveying instruments, Technological tools, Terrestrial Laser Scanners, Virtualization
@inproceedings{scianna_virtualization_2020,
title = {THE VIRTUALIZATION of CH for HISTORICAL RECONSTRUCTION: The AR FRUITION of the FOUNTAIN of ST. GEORGE SQUARE in VALLETTA (MALTA)},
author = {Andrea Scianna and Giuseppe Fulvio Gaglio and Reuben Grima and Marcello La Guardia},
editor = {Morley J. Ellul C. Wong K.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092158237&doi=10.5194%2fisprs-archives-XLIV-4-W1-2020-143-2020&partnerID=40&md5=78e65721658fcbc025994f2404040e59},
doi = {10.5194/isprs-archives-XLIV-4-W1-2020-143-2020},
year = {2020},
date = {2020-01-01},
booktitle = {International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives},
volume = {44},
pages = {143–149},
publisher = {International Society for Photogrammetry and Remote Sensing},
abstract = {Improving accessibility to Cultural Heritage (CH) is an increasingly urgent challenge today. It is not only a matter of physical inaccessibility but also temporal, considering that part of CH now lost. Fortunately, the most modern technological tools are helping to break down both space and time barriers. In facts, recent advances in representation, 3D modelling and survey methodologies opened new scenarios for valorization and conservation of CH. In particular, the improvement of quality in resolution and sensor sensitivity of cameras allowed to achieve the right level of 3D reconstruction through digital photogrammetry procedures. In the same field, terrestrial laser scanners (TLS) allowed acquiring dense point clouds of complex environments with a millimetric level of accuracy. At the same time, the application of Augmented Reality (AR) and Virtual Reality (VR) technologies is an excellent solution for improving the accessibility to monuments, museums and archaeological sites. It is possible to share new levels of information about CH, in space and time, for touristic, managerial and scientific aims. This work is focused on the virtualization of CH, considering the study case of the fountain of Wignacourt, today present in St. Philip Garden in Floriana and initially located in Valletta (Malta). The application presented allows the virtual fruition of the monument placed in its original location, St. George Square. A simplified plant of the square will enable tourists to make a temporal journey in the past with their mobile device. The work is part of the Interreg Italia-Malta European project named I-Access, dedicated to the improvement of CH accessibility. It focuses the attention to the experimentation of new specific procedures in Geomatics necessary to solve big data issues of complex environment visualization. © Authors 2020.},
note = {Issue: 4/W1},
keywords = {3D modeling, 3D Modelling, Archaeological Site, Augmented Reality, Complex environments, Cultural heritage, Cultural heritages, Data visualization, Digital Photogrammetry, Fountains, Historical Reconstruction, Sensor sensitivity, Surveying instruments, Technological tools, Terrestrial Laser Scanners, Virtualization},
pubstate = {published},
tppubtype = {inproceedings}
}
2010
Scianna, Andrea; Ammoscato, Alessio
3D gis data model using open source software Proceedings Article
In: A, Peled (Ed.): International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 120–125, International Society for Photogrammetry and Remote Sensing, 2010.
Abstract | Links | BibTeX | Tags: 3-dimensional modeling, 3D Modelling, Blending, Computer software, Data visualization, Database systems, Environmental database, Environmental Technology, Free and open source softwares, Geographic information systems, Geographical Information Systems, High level languages, HTTP, Internet, Internet browsers, Internet protocols, Interoperability, Maintenance, Mapping, Maps, Open source software, Open systems, Query languages, Research management, Social networking (online), Software engineering, Spatial, Technology, Three dimensional computer graphics, Three-dimensional data, Topological information, Topology, World Wide Web
@inproceedings{scianna_3d_2010,
title = {3D gis data model using open source software},
author = {Andrea Scianna and Alessio Ammoscato},
editor = {Peled A},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880227655&partnerID=40&md5=502aa042af1693c18f34b5d74c4dd2bd},
year = {2010},
date = {2010-01-01},
booktitle = {International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives},
volume = {38},
pages = {120–125},
publisher = {International Society for Photogrammetry and Remote Sensing},
abstract = {Today many kinds of applications requires data containing actual three-dimensional data; fields like urban and town planning and pollution studies need 3D data, both for visualization purpose, as well as carry out many spatial analysis. This research-Management and use of distributed 3D data by open source Web-GIS software-is part of the Italian "PRIN 2007"∗ research project, aimed to build urban and suburban 3D models, and to interact with them using open source software only. Particularly free and open source software, used for the experimentation here shown, are Blender and PostGIS; the first one has been used to build and structure three-dimensional data, the second one for data allocation. These software interact using scripts, written in Python language. Buildings have been modeled upon the GIANT3D model (Geographical Interoperable Advanced Numerical Topological 3-Dimensional Model) developed in the research "PRIN 2004", regarding "Evolved structure of numerical cartography for Gis and Web-GIS". Python scripts, activated by Blender, allow to allocate data into a spatial database implemented through PostgreSQL and PostGis, that could be a remote database somewhere on the net; all geometrical and topological information, implemented in the 3D model, are so transferred in PostGIS. These information can be retrieved by Blender using other Python scripts, so Blender fully interacts with 3D data allocated in PostGIS. These data can be also accessed by many other clients, both directly using a database client, as using other protocols (like HTTP on the internet). Next step is to build an open source viewer, or a plugin for internet browsers, that allows client to visualize, explore and inquiry 3D model, retrieving data from database.},
keywords = {3-dimensional modeling, 3D Modelling, Blending, Computer software, Data visualization, Database systems, Environmental database, Environmental Technology, Free and open source softwares, Geographic information systems, Geographical Information Systems, High level languages, HTTP, Internet, Internet browsers, Internet protocols, Interoperability, Maintenance, Mapping, Maps, Open source software, Open systems, Query languages, Research management, Social networking (online), Software engineering, Spatial, Technology, Three dimensional computer graphics, Three-dimensional data, Topological information, Topology, World Wide Web},
pubstate = {published},
tppubtype = {inproceedings}
}