AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Yin, Z.; Wang, Y.; Papatheodorou, T.; Hui, P.
Text2VRScene: Exploring the Framework of Automated Text-driven Generation System for VR Experience Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR, pp. 701–711, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835037402-5 (ISBN).
Abstract | Links | BibTeX | Tags: Automated systems, Automation, Digital contents, Generation systems, Generative model, Human computer interaction, Human computer interaction (HCI), Human-centered computing, Interaction paradigm, Interaction paradigms, Interaction techniques, Language Model, Natural language processing systems, Text input, User interfaces, Virtual Reality
@inproceedings{yin_text2vrscene_2024,
title = {Text2VRScene: Exploring the Framework of Automated Text-driven Generation System for VR Experience},
author = {Z. Yin and Y. Wang and T. Papatheodorou and P. Hui},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85191431035&doi=10.1109%2fVR58804.2024.00090&partnerID=40&md5=5484a5bc3939d003efe68308f56b15a6},
doi = {10.1109/VR58804.2024.00090},
isbn = {979-835037402-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR},
pages = {701–711},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {With the recent development of the Virtual Reality (VR) industry, the increasing number of VR users pushes the demand for the massive production of immersive and expressive VR scenes in related industries. However, creating expressive VR scenes involves the reasonable organization of various digital content to express a coherent and logical theme, which is time-consuming and labor-intensive. In recent years, Large Language Models (LLMs) such as ChatGPT 3.5 and generative models such as stable diffusion have emerged as powerful tools for comprehending natural language and generating digital contents such as text, code, images, and 3D objects. In this paper, we have explored how we can generate VR scenes from text by incorporating LLMs and various generative models into an automated system. To achieve this, we first identify the possible limitations of LLMs for an automated system and propose a systematic framework to mitigate them. Subsequently, we developed Text2VRScene, a VR scene generation system, based on our proposed framework with well-designed prompts. To validate the effectiveness of our proposed framework and the designed prompts, we carry out a series of test cases. The results show that the proposed framework contributes to improving the reliability of the system and the quality of the generated VR scenes. The results also illustrate the promising performance of the Text2VRScene in generating satisfying VR scenes with a clear theme regularized by our well-designed prompts. This paper ends with a discussion about the limitations of the current system and the potential of developing similar generation systems based on our framework. © 2024 IEEE.},
keywords = {Automated systems, Automation, Digital contents, Generation systems, Generative model, Human computer interaction, Human computer interaction (HCI), Human-centered computing, Interaction paradigm, Interaction paradigms, Interaction techniques, Language Model, Natural language processing systems, Text input, User interfaces, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
With the recent development of the Virtual Reality (VR) industry, the increasing number of VR users pushes the demand for the massive production of immersive and expressive VR scenes in related industries. However, creating expressive VR scenes involves the reasonable organization of various digital content to express a coherent and logical theme, which is time-consuming and labor-intensive. In recent years, Large Language Models (LLMs) such as ChatGPT 3.5 and generative models such as stable diffusion have emerged as powerful tools for comprehending natural language and generating digital contents such as text, code, images, and 3D objects. In this paper, we have explored how we can generate VR scenes from text by incorporating LLMs and various generative models into an automated system. To achieve this, we first identify the possible limitations of LLMs for an automated system and propose a systematic framework to mitigate them. Subsequently, we developed Text2VRScene, a VR scene generation system, based on our proposed framework with well-designed prompts. To validate the effectiveness of our proposed framework and the designed prompts, we carry out a series of test cases. The results show that the proposed framework contributes to improving the reliability of the system and the quality of the generated VR scenes. The results also illustrate the promising performance of the Text2VRScene in generating satisfying VR scenes with a clear theme regularized by our well-designed prompts. This paper ends with a discussion about the limitations of the current system and the potential of developing similar generation systems based on our framework. © 2024 IEEE.