AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Song, T.; Liu, Z.; Zhao, R.; Fu, J.
ElderEase AR: Enhancing Elderly Daily Living with the Multimodal Large Language Model and Augmented Reality Proceedings Article
In: ICVRT - Proc. Int. Conf. Virtual Real. Technol., pp. 60–67, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071018-6 (ISBN).
Abstract | Links | BibTeX | Tags: Age-related, Assisted living, Augmented Reality, Augmented reality technology, Daily Life Support, Daily living, Daily-life supports, Elderly, Elderly users, Independent living, Independent living systems, Language Model, Modeling languages, Multi agent systems, Multi-modal, Multimodal large language model
@inproceedings{song_elderease_2025,
title = {ElderEase AR: Enhancing Elderly Daily Living with the Multimodal Large Language Model and Augmented Reality},
author = {T. Song and Z. Liu and R. Zhao and J. Fu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001924899&doi=10.1145%2f3711496.3711505&partnerID=40&md5=4df693735547b505172657a73359f3ca},
doi = {10.1145/3711496.3711505},
isbn = {979-840071018-6 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {ICVRT - Proc. Int. Conf. Virtual Real. Technol.},
pages = {60–67},
publisher = {Association for Computing Machinery, Inc},
abstract = {Elderly individuals often face challenges in independent living due to age-related cognitive and physical decline. To address these issues, we propose an innovative Augmented Reality (AR) system, “ElderEase AR”, designed to assist elderly users in their daily lives by leveraging a Multimodal Large Language Model (MLLM). This system enables elderly users to capture images of their surroundings and ask related questions, providing context-aware feedback. We evaluated the system’s perceived ease-of-use and feasibility through a pilot study involving 30 elderly users, aiming to enhance their independence and quality of life. Our system integrates advanced AR technology with an intelligent agent trained on multimodal datasets. Through prompt engineering, the agent is tailored to respond in a manner that aligns with the speaking style of elderly users. Experimental results demonstrate high accuracy in object recognition and question answering, with positive feedback from user trials. Specifically, the system accurately identified objects in various environments and provided relevant answers to user queries. This study highlights the powerful potential of AR and AI technologies in creating support tools for the elderly. It suggests directions for future improvements and applications, such as enhancing the system’s adaptability to different user needs and expanding its functionality to cover more aspects of daily living. © 2024 Copyright held by the owner/author(s).},
keywords = {Age-related, Assisted living, Augmented Reality, Augmented reality technology, Daily Life Support, Daily living, Daily-life supports, Elderly, Elderly users, Independent living, Independent living systems, Language Model, Modeling languages, Multi agent systems, Multi-modal, Multimodal large language model},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Rahmani, R.; Westin, T.; Nevelsteen, K.
Future Healthcare in Generative AI with Real Metaverse Proceedings Article
In: E.E., Shakshuki (Ed.): Procedia Comput. Sci., pp. 487–493, Elsevier B.V., 2024, ISBN: 18770509 (ISSN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, AI, Augmented Reality, Autism spectrum disorders, Contrastive Learning, Diseases, Edge Intelligence, Generative adversarial networks, Healthcare, Immersive learning, Independent living systems, Language Model, Large language model, LLM, Metaverses, Posttraumatic stress disorder, Real Metaverse, Social challenges, Virtual environments
@inproceedings{rahmani_future_2024,
title = {Future Healthcare in Generative AI with Real Metaverse},
author = {R. Rahmani and T. Westin and K. Nevelsteen},
editor = {Shakshuki E.E.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214986921&doi=10.1016%2fj.procs.2024.11.137&partnerID=40&md5=3e25f2a1b023cd49f59a066a96bb2dd0},
doi = {10.1016/j.procs.2024.11.137},
isbn = {18770509 (ISSN)},
year = {2024},
date = {2024-01-01},
booktitle = {Procedia Comput. Sci.},
volume = {251},
pages = {487–493},
publisher = {Elsevier B.V.},
abstract = {The Metaverse offers a simulated environment that could transform healthcare by providing immersive learning experiences through Internet application and social form that integrates network of virtual reality environments. The Metaverse is expected to contribute to a new way of socializing, where users can enter a verse as avatars. The concept allows avatars to switch between verses seamlessly. Virtual Reality (VR) in healthcare has shown promise for social-skill training, especially for individuals with Autism Spectrum Disorder (ASD) and social challenge training of patients with Post-Traumatic Stress Disorder (PTSD) requiring adaptable support. The problem lies in the limited adaptability and functionality of existing Metaverse implementations for individuals with ASD and PTSD. While studies have explored various implementation ideas, such as VR platforms for training social skills, social challenge and context-aware Augmented Reality (AR) systems for daily activities, many lack adaptability of user input and output. A proposed solution involves a context-aware system using AI, Large Language Models (LLMs) and generative agents to support independent living for individuals with ASD and a tool to enhance emotional learning with PTSD. © 2024 The Authors.},
keywords = {Adversarial machine learning, AI, Augmented Reality, Autism spectrum disorders, Contrastive Learning, Diseases, Edge Intelligence, Generative adversarial networks, Healthcare, Immersive learning, Independent living systems, Language Model, Large language model, LLM, Metaverses, Posttraumatic stress disorder, Real Metaverse, Social challenges, Virtual environments},
pubstate = {published},
tppubtype = {inproceedings}
}