AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Liu, G.; Du, H.; Wang, J.; Niyato, D.; Kim, D. I.
Contract-Inspired Contest Theory for Controllable Image Generation in Mobile Edge Metaverse Journal Article
In: IEEE Transactions on Mobile Computing, 2025, ISSN: 15361233 (ISSN).
Abstract | Links | BibTeX | Tags: Contest Theory, Deep learning, Deep reinforcement learning, Diffusion Model, Generative adversarial networks, Generative AI, High quality, Image generation, Image generations, Immersive technologies, Metaverses, Mobile edge computing, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Semantic data, Virtual addresses, Virtual environments, Virtual Reality
@article{liu_contract-inspired_2025,
title = {Contract-Inspired Contest Theory for Controllable Image Generation in Mobile Edge Metaverse},
author = {G. Liu and H. Du and J. Wang and D. Niyato and D. I. Kim},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000066834&doi=10.1109%2fTMC.2025.3550815&partnerID=40&md5=3cb5a2143b9ce4ca7f931a60f1bf239c},
doi = {10.1109/TMC.2025.3550815},
issn = {15361233 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Mobile Computing},
abstract = {The rapid advancement of immersive technologies has propelled the development of the Metaverse, where the convergence of virtual and physical realities necessitates the generation of high-quality, photorealistic images to enhance user experience. However, generating these images, especially through Generative Diffusion Models (GDMs), in mobile edge computing environments presents significant challenges due to the limited computing resources of edge devices and the dynamic nature of wireless networks. This paper proposes a novel framework that integrates contract-inspired contest theory, Deep Reinforcement Learning (DRL), and GDMs to optimize image generation in these resource-constrained environments. The framework addresses the critical challenges of resource allocation and semantic data transmission quality by incentivizing edge devices to efficiently transmit high-quality semantic data, which is essential for creating realistic and immersive images. The use of contest and contract theory ensures that edge devices are motivated to allocate resources effectively, while DRL dynamically adjusts to network conditions, optimizing the overall image generation process. Experimental results demonstrate that the proposed approach not only improves the quality of generated images but also achieves superior convergence speed and stability compared to traditional methods. This makes the framework particularly effective for optimizing complex resource allocation tasks in mobile edge Metaverse applications, offering enhanced performance and efficiency in creating immersive virtual environments. © 2002-2012 IEEE.},
keywords = {Contest Theory, Deep learning, Deep reinforcement learning, Diffusion Model, Generative adversarial networks, Generative AI, High quality, Image generation, Image generations, Immersive technologies, Metaverses, Mobile edge computing, Reinforcement Learning, Reinforcement learnings, Resource allocation, Resources allocation, Semantic data, Virtual addresses, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
The rapid advancement of immersive technologies has propelled the development of the Metaverse, where the convergence of virtual and physical realities necessitates the generation of high-quality, photorealistic images to enhance user experience. However, generating these images, especially through Generative Diffusion Models (GDMs), in mobile edge computing environments presents significant challenges due to the limited computing resources of edge devices and the dynamic nature of wireless networks. This paper proposes a novel framework that integrates contract-inspired contest theory, Deep Reinforcement Learning (DRL), and GDMs to optimize image generation in these resource-constrained environments. The framework addresses the critical challenges of resource allocation and semantic data transmission quality by incentivizing edge devices to efficiently transmit high-quality semantic data, which is essential for creating realistic and immersive images. The use of contest and contract theory ensures that edge devices are motivated to allocate resources effectively, while DRL dynamically adjusts to network conditions, optimizing the overall image generation process. Experimental results demonstrate that the proposed approach not only improves the quality of generated images but also achieves superior convergence speed and stability compared to traditional methods. This makes the framework particularly effective for optimizing complex resource allocation tasks in mobile edge Metaverse applications, offering enhanced performance and efficiency in creating immersive virtual environments. © 2002-2012 IEEE.