AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Li, K.; Mostajeran, F.; Rings, S.; Kruse, L.; Schmidt, S.; Arz, M.; Wolf, E.; Steinicke, F.
I Hear, See, Speak & Do: Bringing Multimodal Information Processing to Intelligent Virtual Agents for Natural Human-AI Communication Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW, pp. 1648–1649, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833151484-6 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence tools, Cloud services, Embodied AI, Embodied artificial intelligence, Extended reality, Human computer interaction, Human-AI Interaction, Human-artificial intelligence interaction, Information processing capability, Intelligent virtual agents, Language Model, Multi-modal information, Virtual agent, Work-flows
@inproceedings{li_i_2025,
title = {I Hear, See, Speak & Do: Bringing Multimodal Information Processing to Intelligent Virtual Agents for Natural Human-AI Communication},
author = {K. Li and F. Mostajeran and S. Rings and L. Kruse and S. Schmidt and M. Arz and E. Wolf and F. Steinicke},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005146647&doi=10.1109%2fVRW66409.2025.00469&partnerID=40&md5=77e755f6a059f81e81c18987f58d00cc},
doi = {10.1109/VRW66409.2025.00469},
isbn = {979-833151484-6 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW},
pages = {1648–1649},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In this demo paper, we present an Extended Reality (XR) framework providing a streamlined workflow for creating and interacting with intelligent virtual agents (IVAs) with multimodal information processing capabilities using commercially available artificial intelligence (AI) tools and cloud services such as large language and vision models. The system supports (i) the integration of high-quality, customizable virtual 3D human models for visual representations of IVAs and (ii) multimodal communication with generative AI-driven IVAs in immersive XR, featuring realistic human behavior simulations. Our demo showcases the enormous potential and vast design space of embodied IVAs for various XR applications. © 2025 IEEE.},
keywords = {Artificial intelligence tools, Cloud services, Embodied AI, Embodied artificial intelligence, Extended reality, Human computer interaction, Human-AI Interaction, Human-artificial intelligence interaction, Information processing capability, Intelligent virtual agents, Language Model, Multi-modal information, Virtual agent, Work-flows},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Sarshartehrani, F.; Mohammadrezaei, E.; Behravan, M.; Gracanin, D.
Enhancing E-Learning Experience Through Embodied AI Tutors in Immersive Virtual Environments: A Multifaceted Approach for Personalized Educational Adaptation Proceedings Article
In: R.A., Sottilare; J., Schwarz (Ed.): Lect. Notes Comput. Sci., pp. 272–287, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303160608-3 (ISBN).
Abstract | Links | BibTeX | Tags: Adaptive Learning, Artificial intelligence, Artificial intelligence in education, Computer aided instruction, Computer programming, E - learning, E-Learning, Education computing, Embodied artificial intelligence, Engineering education, Immersive Virtual Environments, Learner Engagement, Learning experiences, Learning systems, Multi-faceted approach, Personalized Instruction, Traditional boundaries, Virtual Reality
@inproceedings{sarshartehrani_enhancing_2024,
title = {Enhancing E-Learning Experience Through Embodied AI Tutors in Immersive Virtual Environments: A Multifaceted Approach for Personalized Educational Adaptation},
author = {F. Sarshartehrani and E. Mohammadrezaei and M. Behravan and D. Gracanin},
editor = {Sottilare R.A. and Schwarz J.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196174389&doi=10.1007%2f978-3-031-60609-0_20&partnerID=40&md5=3801d0959781b1a191a3eb14f47bd8d8},
doi = {10.1007/978-3-031-60609-0_20},
isbn = {03029743 (ISSN); 978-303160608-3 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {14727 LNCS},
pages = {272–287},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {As digital education transcends traditional boundaries, e-learning experiences are increasingly shaped by cutting-edge technologies like artificial intelligence (AI), virtual reality (VR), and adaptive learning systems. This study examines the integration of AI-driven personalized instruction within immersive VR environments, targeting enhanced learner engagement-a core metric in online education effectiveness. Employing a user-centric design, the research utilizes embodied AI tutors, calibrated to individual learners’ emotional intelligence and cognitive states, within a Python programming curriculum-a key area in computer science education. The methodology relies on intelligent tutoring systems and personalized learning pathways, catering to a diverse participant pool from Virginia Tech. Our data-driven approach, underpinned by the principles of educational psychology and computational pedagogy, indicates that AI-enhanced virtual learning environments significantly elevate user engagement and proficiency in programming education. Although the scope is limited to a single academic institution, the promising results advocate for the scalability of such AI-powered educational tools, with potential implications for distance learning, MOOCs, and lifelong learning platforms. This research contributes to the evolving narrative of smart education and the role of large language models (LLMs) in crafting bespoke educational experiences, suggesting a paradigm shift towards more interactive, personalized e-learning solutions that align with global educational technology trends. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Adaptive Learning, Artificial intelligence, Artificial intelligence in education, Computer aided instruction, Computer programming, E - learning, E-Learning, Education computing, Embodied artificial intelligence, Engineering education, Immersive Virtual Environments, Learner Engagement, Learning experiences, Learning systems, Multi-faceted approach, Personalized Instruction, Traditional boundaries, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}