AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Bosser, A. -G.; Cascarano, P.; Lacoche, J.; Hajahmadi, S.; Stanescu, A.; Sörös, G.
Preface to the First Workshop on GenAI-XR: Generative Artificial Intelligence meets Extended Reality Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW, pp. 129–130, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833151484-6 (ISBN).
Abstract | Links | BibTeX | Tags: Adaptive environment, Adaptive Environments, Art educations, Artificial Intelligence and Extended Reality Integration, Context-aware systems, Entertainment industry, Extended reality, Immersive, Indexterm: generative artificial intelligence, IndexTerms: Generative Artificial Intelligence, Industry professionals, Innovative method, Personalized interaction, Personalized Interactions
@inproceedings{bosser_preface_2025,
title = {Preface to the First Workshop on GenAI-XR: Generative Artificial Intelligence meets Extended Reality},
author = {A. -G. Bosser and P. Cascarano and J. Lacoche and S. Hajahmadi and A. Stanescu and G. Sörös},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005161220&doi=10.1109%2fVRW66409.2025.00033&partnerID=40&md5=41f0fb56b31c0beb94368c3379e5d75a},
doi = {10.1109/VRW66409.2025.00033},
isbn = {979-833151484-6 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW},
pages = {129–130},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {The GenAI-XR workshop aims to explore the intersection of Generative Artificial Intelligence (GenAI) and Extended Reality (XR), examining their combined potential to revolutionize various sectors including entertainment, arts, education, factory work, healthcare, architecture, and others. The workshop will provide a platform for researchers, industry professionals, and practitioners to discuss innovative methods of integrating GenAI into XR environments, enhancing immersive experiences, and personalizing interactions in real time. Through presentation and discussion sessions, participants will gain insights into the latest developments, challenges, and future directions at the intersection of GenAI and XR. © 2025 IEEE.},
keywords = {Adaptive environment, Adaptive Environments, Art educations, Artificial Intelligence and Extended Reality Integration, Context-aware systems, Entertainment industry, Extended reality, Immersive, Indexterm: generative artificial intelligence, IndexTerms: Generative Artificial Intelligence, Industry professionals, Innovative method, Personalized interaction, Personalized Interactions},
pubstate = {published},
tppubtype = {inproceedings}
}
Li, K.; Mostajeran, F.; Rings, S.; Kruse, L.; Schmidt, S.; Arz, M.; Wolf, E.; Steinicke, F.
I Hear, See, Speak & Do: Bringing Multimodal Information Processing to Intelligent Virtual Agents for Natural Human-AI Communication Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW, pp. 1648–1649, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833151484-6 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence tools, Cloud services, Embodied AI, Embodied artificial intelligence, Extended reality, Human computer interaction, Human-AI Interaction, Human-artificial intelligence interaction, Information processing capability, Intelligent virtual agents, Language Model, Multi-modal information, Virtual agent, Work-flows
@inproceedings{li_i_2025,
title = {I Hear, See, Speak & Do: Bringing Multimodal Information Processing to Intelligent Virtual Agents for Natural Human-AI Communication},
author = {K. Li and F. Mostajeran and S. Rings and L. Kruse and S. Schmidt and M. Arz and E. Wolf and F. Steinicke},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005146647&doi=10.1109%2fVRW66409.2025.00469&partnerID=40&md5=77e755f6a059f81e81c18987f58d00cc},
doi = {10.1109/VRW66409.2025.00469},
isbn = {979-833151484-6 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW},
pages = {1648–1649},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In this demo paper, we present an Extended Reality (XR) framework providing a streamlined workflow for creating and interacting with intelligent virtual agents (IVAs) with multimodal information processing capabilities using commercially available artificial intelligence (AI) tools and cloud services such as large language and vision models. The system supports (i) the integration of high-quality, customizable virtual 3D human models for visual representations of IVAs and (ii) multimodal communication with generative AI-driven IVAs in immersive XR, featuring realistic human behavior simulations. Our demo showcases the enormous potential and vast design space of embodied IVAs for various XR applications. © 2025 IEEE.},
keywords = {Artificial intelligence tools, Cloud services, Embodied AI, Embodied artificial intelligence, Extended reality, Human computer interaction, Human-AI Interaction, Human-artificial intelligence interaction, Information processing capability, Intelligent virtual agents, Language Model, Multi-modal information, Virtual agent, Work-flows},
pubstate = {published},
tppubtype = {inproceedings}
}
Mereu, J.
Using LLMs to enhance end-user development support in XR Proceedings Article
In: V., Paneva; D., Tetteroo; V., Frau; S., Feger; D., Spano; F., Paterno; S., Sauer; M., Manca (Ed.): CEUR Workshop Proc., CEUR-WS, 2025, ISBN: 16130073 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Condition, Configuration, Development support, Development technique, End-User Development, End-Users, Event-condition-action, Event-Condition-Actions, Extended reality, Human computer interaction, Information Systems, Information use, Natural Language, Natural language processing systems, Natural languages, Rule, rules
@inproceedings{mereu_using_2025,
title = {Using LLMs to enhance end-user development support in XR},
author = {J. Mereu},
editor = {Paneva V. and Tetteroo D. and Frau V. and Feger S. and Spano D. and Paterno F. and Sauer S. and Manca M.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105008755984&partnerID=40&md5=bfaaa38c3bee309621426f8f35332107},
isbn = {16130073 (ISSN)},
year = {2025},
date = {2025-01-01},
booktitle = {CEUR Workshop Proc.},
volume = {3978},
publisher = {CEUR-WS},
abstract = {This paper outlines the center stage of my PhD research, which aims to empower non-developer users to create and customize eXtended Reality (XR) environments through End-User Development (EUD) techniques combined with the latest AI tools. In particular, I describe my contributions to the EUD4XR project, detailing both the work completed and the ongoing developments. EUD4XR seeks to support end-users in customizing XR content with the assistance of a Large Language Model (LLM)-based conversational agent. © 2025 Copyright for this paper by its authors.},
keywords = {Artificial intelligence, Condition, Configuration, Development support, Development technique, End-User Development, End-Users, Event-condition-action, Event-Condition-Actions, Extended reality, Human computer interaction, Information Systems, Information use, Natural Language, Natural language processing systems, Natural languages, Rule, rules},
pubstate = {published},
tppubtype = {inproceedings}
}
Espinal, W. Y. Arevalo; Jimenez, J.; Corneo, L.
An eXtended Reality Data Transformation Framework for Internet of Things Devices Integration Proceedings Article
In: IoT - Proc. Int. Conf. Internet Things, pp. 10–18, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071285-2 (ISBN).
Abstract | Links | BibTeX | Tags: Application programs, Comprehensive evaluation, Data integration, Data Transformation, Device and Data Integration, Devices integration, Extended reality, Generative AI, Interactive objects, Internet of Things, Language Model, Software runtime, Time-consuming tasks
@inproceedings{arevalo_espinal_extended_2025,
title = {An eXtended Reality Data Transformation Framework for Internet of Things Devices Integration},
author = {W. Y. Arevalo Espinal and J. Jimenez and L. Corneo},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002862430&doi=10.1145%2f3703790.3703792&partnerID=40&md5=6ba7d70e00e3b0803149854b5744e55e},
doi = {10.1145/3703790.3703792},
isbn = {979-840071285-2 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IoT - Proc. Int. Conf. Internet Things},
pages = {10–18},
publisher = {Association for Computing Machinery, Inc},
abstract = {The multidisciplinary nature of XR applications makes device and data integration a resource-intensive and time-consuming task, especially in the context of the Internet of Things (IoT). This paper presents Visualize Interactive Objects, VIO for short, a data transformation framework aimed at simplifying visualization and interaction of IoT devices and their data into XR applications. VIO comprises a software runtime (VRT) running on XR headsets, and a JSON-based syntax for defining VIO Descriptions (VDs). The VRT interprets VDs to facilitate visualization and interaction within the application. By raising the level of abstraction, VIO enhances interoperability among XR experiences and enables developers to integrate IoT data with minimal coding effort. A comprehensive evaluation demonstrated that VIO is lightweight, incurring in negligible overhead compared to native implementations. Ten Large Language Models (LLM) were used to generate VDs and native source-code from user intents. The results showed that LLMs have superior syntactical and semantical accuracy in generating VDs compared to native XR application development code, thus indicating that the task of creating VDs can be effectively automated using LLMs. Additionally, a user study with 12 participants found that VIO is developer-friendly and easily extensible. © 2024 Copyright held by the owner/author(s).},
keywords = {Application programs, Comprehensive evaluation, Data integration, Data Transformation, Device and Data Integration, Devices integration, Extended reality, Generative AI, Interactive objects, Internet of Things, Language Model, Software runtime, Time-consuming tasks},
pubstate = {published},
tppubtype = {inproceedings}
}
Chen, J.; Wu, X.; Lan, T.; Li, B.
LLMER: Crafting Interactive Extended Reality Worlds with JSON Data Generated by Large Language Models Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2715–2724, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: % reductions, 3D modeling, algorithm, Algorithms, Augmented Reality, Coding errors, Computer graphics, Computer interaction, computer interface, Computer simulation languages, Extended reality, generative artificial intelligence, human, Human users, human-computer interaction, Humans, Imaging, Immersive, Language, Language Model, Large language model, large language models, Metadata, Natural Language Processing, Natural language processing systems, Natural languages, procedures, Script generation, Spatio-temporal data, Three dimensional computer graphics, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Virtual Reality
@article{chen_llmer_2025,
title = {LLMER: Crafting Interactive Extended Reality Worlds with JSON Data Generated by Large Language Models},
author = {J. Chen and X. Wu and T. Lan and B. Li},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003825793&doi=10.1109%2fTVCG.2025.3549549&partnerID=40&md5=da4681d0714548e3a7e0c8c3295d2348},
doi = {10.1109/TVCG.2025.3549549},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2715–2724},
abstract = {The integration of Large Language Models (LLMs) like GPT-4 with Extended Reality (XR) technologies offers the potential to build truly immersive XR environments that interact with human users through natural language, e.g., generating and animating 3D scenes from audio inputs. However, the complexity of XR environments makes it difficult to accurately extract relevant contextual data and scene/object parameters from an overwhelming volume of XR artifacts. It leads to not only increased costs with pay-per-use models, but also elevated levels of generation errors. Moreover, existing approaches focusing on coding script generation are often prone to generation errors, resulting in flawed or invalid scripts, application crashes, and ultimately a degraded user experience. To overcome these challenges, we introduce LLMER, a novel framework that creates interactive XR worlds using JSON data generated by LLMs. Unlike prior approaches focusing on coding script generation, LLMER translates natural language inputs into JSON data, significantly reducing the likelihood of application crashes and processing latency. It employs a multi-stage strategy to supply only the essential contextual information adapted to the user's request and features multiple modules designed for various XR tasks. Our preliminary user study reveals the effectiveness of the proposed system, with over 80% reduction in consumed tokens and around 60% reduction in task completion time compared to state-of-the-art approaches. The analysis of users' feedback also illuminates a series of directions for further optimization. © 1995-2012 IEEE.},
keywords = {% reductions, 3D modeling, algorithm, Algorithms, Augmented Reality, Coding errors, Computer graphics, Computer interaction, computer interface, Computer simulation languages, Extended reality, generative artificial intelligence, human, Human users, human-computer interaction, Humans, Imaging, Immersive, Language, Language Model, Large language model, large language models, Metadata, Natural Language Processing, Natural language processing systems, Natural languages, procedures, Script generation, Spatio-temporal data, Three dimensional computer graphics, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Carcangiu, A.; Manca, M.; Mereu, J.; Santoro, C.; Simeoli, L.; Spano, L. D.
Conversational Rule Creation in XR: User’s Strategies in VR and AR Automation Proceedings Article
In: C., Santoro; A., Schmidt; M., Matera; A., Bellucci (Ed.): Lect. Notes Comput. Sci., pp. 59–79, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303195451-1 (ISBN).
Abstract | Links | BibTeX | Tags: 'current, Automation, Chatbots, Condition, End-User Development, Extended reality, Human computer interaction, Immersive authoring, Language Model, Large language model, large language models, Rule, Rule-based approach, rules, User interfaces
@inproceedings{carcangiu_conversational_2025,
title = {Conversational Rule Creation in XR: User’s Strategies in VR and AR Automation},
author = {A. Carcangiu and M. Manca and J. Mereu and C. Santoro and L. Simeoli and L. D. Spano},
editor = {Santoro C. and Schmidt A. and Matera M. and Bellucci A.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105009012634&doi=10.1007%2f978-3-031-95452-8_4&partnerID=40&md5=67e2b8ca4bb2b508cd41548e3471705b},
doi = {10.1007/978-3-031-95452-8_4},
isbn = {03029743 (ISSN); 978-303195451-1 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15713 LNCS},
pages = {59–79},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Rule-based approaches allow users to customize XR environments. However, the current menu-based interfaces still create barriers for end-user developers. Chatbots based on Large Language Models (LLMs) have the potential to reduce the threshold needed for rule creation, but how users articulate their intentions through conversation remains under-explored. This work investigates how users express event-condition-action automation rules in Virtual Reality (VR) and Augmented Reality (AR) environments. Through two user studies, we show that the dialogues share consistent strategies across the interaction setting (keywords, difficulties in expressing conditions, task success), even if we registered different adaptations for each setting (verbal structure, event vs action first rules). Our findings are relevant for the design and implementation of chatbot-based support for expressing automations in an XR setting. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {'current, Automation, Chatbots, Condition, End-User Development, Extended reality, Human computer interaction, Immersive authoring, Language Model, Large language model, large language models, Rule, Rule-based approach, rules, User interfaces},
pubstate = {published},
tppubtype = {inproceedings}
}
Buldu, K. B.; Özdel, S.; Lau, K. H. Carrie; Wang, M.; Saad, D.; Schönborn, S.; Boch, A.; Kasneci, E.; Bozkir, E.
CUIfy the XR: An Open-Source Package to Embed LLM-Powered Conversational Agents in XR Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 192–197, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833152157-8 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Computational Linguistics, Conversational user interface, conversational user interfaces, Extended reality, Head-mounted-displays, Helmet mounted displays, Language Model, Large language model, large language models, Non-player character, non-player characters, Open source software, Personnel training, Problem oriented languages, Speech models, Speech-based interaction, Text to speech, Unity, Virtual environments, Virtual Reality
@inproceedings{buldu_cuify_2025,
title = {CUIfy the XR: An Open-Source Package to Embed LLM-Powered Conversational Agents in XR},
author = {K. B. Buldu and S. Özdel and K. H. Carrie Lau and M. Wang and D. Saad and S. Schönborn and A. Boch and E. Kasneci and E. Bozkir},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000229165&doi=10.1109%2fAIxVR63409.2025.00037&partnerID=40&md5=837b0e3425d2e5a9358bbe6c8ecb5754},
doi = {10.1109/AIxVR63409.2025.00037},
isbn = {979-833152157-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {192–197},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Recent developments in computer graphics, machine learning, and sensor technologies enable numerous opportunities for extended reality (XR) setups for everyday life, from skills training to entertainment. With large corporations offering affordable consumer-grade head-mounted displays (HMDs), XR will likely become pervasive, and HMDs will develop as personal devices like smartphones and tablets. However, having intelligent spaces and naturalistic interactions in XR is as important as tech-nological advances so that users grow their engagement in virtual and augmented spaces. To this end, large language model (LLM)-powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR. This paper provides the community with an open-source, customizable, extendable, and privacy-aware Unity package, CUIfy, that facili-tates speech-based NPC-user interaction with widely used LLMs, STT, and TTS models. Our package also supports multiple LLM-powered NPCs per environment and minimizes latency between different computational models through streaming to achieve us-able interactions between users and NPCs. We publish our source code in the following repository: https://gitlab.lrz.de/hctl/cuify © 2025 IEEE.},
keywords = {Augmented Reality, Computational Linguistics, Conversational user interface, conversational user interfaces, Extended reality, Head-mounted-displays, Helmet mounted displays, Language Model, Large language model, large language models, Non-player character, non-player characters, Open source software, Personnel training, Problem oriented languages, Speech models, Speech-based interaction, Text to speech, Unity, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Mereu, J.; Artizzu, V.; Carcangiu, A.; Spano, L. D.; Simeoli, L.; Mattioli, A.; Manca, M.; Santoro, C.; Paternò, F.
Empowering End-User in Creating eXtended Reality Content with a Conversational Chatbot Proceedings Article
In: L., Zaina; J.C., Campos; D., Spano; K., Luyten; P., Palanque; G., Veer; A., Ebert; S.R., Humayoun; V., Memmesheimer (Ed.): Lect. Notes Comput. Sci., pp. 126–137, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303191759-2 (ISBN).
Abstract | Links | BibTeX | Tags: Context, End-User Development, End-Users, Event condition action rules, Event-condition-action rules, Extended reality, Immersive authoring, Language Model, Large language model, Meta-design, multimodal input, Multimodal inputs, Virtualization
@inproceedings{mereu_empowering_2025,
title = {Empowering End-User in Creating eXtended Reality Content with a Conversational Chatbot},
author = {J. Mereu and V. Artizzu and A. Carcangiu and L. D. Spano and L. Simeoli and A. Mattioli and M. Manca and C. Santoro and F. Paternò},
editor = {Zaina L. and Campos J.C. and Spano D. and Luyten K. and Palanque P. and Veer G. and Ebert A. and Humayoun S.R. and Memmesheimer V.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007719800&doi=10.1007%2f978-3-031-91760-8_9&partnerID=40&md5=280b33b96bf2b250e515922072f92204},
doi = {10.1007/978-3-031-91760-8_9},
isbn = {03029743 (ISSN); 978-303191759-2 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15518 LNCS},
pages = {126–137},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Recent advancements in eXtended Reality (XR) technologies have found application across diverse domains. However, creating complex interactions within XR environments remains challenging for non-technical users. In this work, we present EUD4XR, a project aiming to: i) empower end-user developers (EUDevs) to customize XR environments by supporting virtual objects and physical devices; ii) involve an intelligent conversational agent which assists the user in defining behaviours. The agent can handle multimodal input, to drive the EUDev during the rule authoring process, using contextual knowledge of the virtual environment and its elements. By integrating conversational assistance, EUD4XR seeks to lower further the usage barriers for end-users to personalize XR experiences according to their needs. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {Context, End-User Development, End-Users, Event condition action rules, Event-condition-action rules, Extended reality, Immersive authoring, Language Model, Large language model, Meta-design, multimodal input, Multimodal inputs, Virtualization},
pubstate = {published},
tppubtype = {inproceedings}
}
Kim, Y.; Aamir, Z.; Singh, M.; Boorboor, S.; Mueller, K.; Kaufman, A. E.
Explainable XR: Understanding User Behaviors of XR Environments Using LLM-Assisted Analytics Framework Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2756–2766, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: adult, Agnostic, Article, Assistive, Cross Reality, Data Analytics, Data collection, data interpretation, Data recording, Data visualization, Extended reality, human, Language Model, Large language model, large language models, Multi-modal, Multimodal Data Collection, normal human, Personalized assistive technique, Personalized Assistive Techniques, recorder, Spatio-temporal data, therapy, user behavior, User behaviors, Virtual addresses, Virtual environments, Virtual Reality, Visual analytics, Visual languages
@article{kim_explainable_2025,
title = {Explainable XR: Understanding User Behaviors of XR Environments Using LLM-Assisted Analytics Framework},
author = {Y. Kim and Z. Aamir and M. Singh and S. Boorboor and K. Mueller and A. E. Kaufman},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003815583&doi=10.1109%2fTVCG.2025.3549537&partnerID=40&md5=1085b698db06656985f80418cb37b773},
doi = {10.1109/TVCG.2025.3549537},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2756–2766},
abstract = {We present Explainable XR, an end-to-end framework for analyzing user behavior in diverse eXtended Reality (XR) environments by leveraging Large Language Models (LLMs) for data interpretation assistance. Existing XR user analytics frameworks face challenges in handling cross-virtuality - AR, VR, MR - transitions, multi-user collaborative application scenarios, and the complexity of multimodal data. Explainable XR addresses these challenges by providing a virtuality-agnostic solution for the collection, analysis, and visualization of immersive sessions. We propose three main components in our framework: (1) A novel user data recording schema, called User Action Descriptor (UAD), that can capture the users' multimodal actions, along with their intents and the contexts; (2) a platform-agnostic XR session recorder, and (3) a visual analytics interface that offers LLM-assisted insights tailored to the analysts' perspectives, facilitating the exploration and analysis of the recorded XR session data. We demonstrate the versatility of Explainable XR by demonstrating five use-case scenarios, in both individual and collaborative XR applications across virtualities. Our technical evaluation and user studies show that Explainable XR provides a highly usable analytics solution for understanding user actions and delivering multifaceted, actionable insights into user behaviors in immersive environments. © 1995-2012 IEEE.},
keywords = {adult, Agnostic, Article, Assistive, Cross Reality, Data Analytics, Data collection, data interpretation, Data recording, Data visualization, Extended reality, human, Language Model, Large language model, large language models, Multi-modal, Multimodal Data Collection, normal human, Personalized assistive technique, Personalized Assistive Techniques, recorder, Spatio-temporal data, therapy, user behavior, User behaviors, Virtual addresses, Virtual environments, Virtual Reality, Visual analytics, Visual languages},
pubstate = {published},
tppubtype = {article}
}
Stacchio, L.; Balloni, E.; Frontoni, E.; Paolanti, M.; Zingaretti, P.; Pierdicca, R.
MineVRA: Exploring the Role of Generative AI-Driven Content Development in XR Environments through a Context-Aware Approach Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 3602–3612, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: adult, Article, Artificial intelligence, Computer graphics, Computer vision, Content Development, Contents development, Context-Aware, Context-aware approaches, Extended reality, female, Generative adversarial networks, Generative AI, generative artificial intelligence, human, Human-in-the-loop, Immersive, Immersive environment, male, Multi-modal, User need, Virtual environments, Virtual Reality
@article{stacchio_minevra_2025,
title = {MineVRA: Exploring the Role of Generative AI-Driven Content Development in XR Environments through a Context-Aware Approach},
author = {L. Stacchio and E. Balloni and E. Frontoni and M. Paolanti and P. Zingaretti and R. Pierdicca},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003746367&doi=10.1109%2fTVCG.2025.3549160&partnerID=40&md5=70b162b574eebbb0cb71db871aa787e1},
doi = {10.1109/TVCG.2025.3549160},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {3602–3612},
abstract = {The convergence of Artificial Intelligence (AI), Computer Vision (CV), Computer Graphics (CG), and Extended Reality (XR) is driving innovation in immersive environments. A key challenge in these environments is the creation of personalized 3D assets, traditionally achieved through manual modeling, a time-consuming process that often fails to meet individual user needs. More recently, Generative AI (GenAI) has emerged as a promising solution for automated, context-aware content generation. In this paper, we present MineVRA (Multimodal generative artificial iNtelligence for contExt-aware Virtual Reality Assets), a novel Human-In-The-Loop (HITL) XR framework that integrates GenAI to facilitate coherent and adaptive 3D content generation in immersive scenarios. To evaluate the effectiveness of this approach, we conducted a comparative user study analyzing the performance and user satisfaction of GenAI-generated 3D objects compared to those generated by Sketchfab in different immersive contexts. The results suggest that GenAI can significantly complement traditional 3D asset libraries, with valuable design implications for the development of human-centered XR environments. © 1995-2012 IEEE.},
keywords = {adult, Article, Artificial intelligence, Computer graphics, Computer vision, Content Development, Contents development, Context-Aware, Context-aware approaches, Extended reality, female, Generative adversarial networks, Generative AI, generative artificial intelligence, human, Human-in-the-loop, Immersive, Immersive environment, male, Multi-modal, User need, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Wang, C.; Sundstedt, V.; Garro, V.
Generative Artificial Intelligence for Immersive Analytics Proceedings Article
In: T., Bashford-Rogers; D., Meneveaux; M., Ammi; M., Ziat; S., Jänicke; H., Purchase; P., Radeva; A., Furnari; K., Bouatouch; A.A., Sousa (Ed.): Proc. Int. Jt. Conf. Comput. Vis. Imaging Comput. Graph. Theory Appl., pp. 938–946, Science and Technology Publications, Lda, 2025, ISBN: 21845921 (ISSN).
Abstract | Links | BibTeX | Tags: Extended reality, generative artificial intelligence, Immersive analytics, Visualization
@inproceedings{wang_generative_2025,
title = {Generative Artificial Intelligence for Immersive Analytics},
author = {C. Wang and V. Sundstedt and V. Garro},
editor = {Bashford-Rogers T. and Meneveaux D. and Ammi M. and Ziat M. and Jänicke S. and Purchase H. and Radeva P. and Furnari A. and Bouatouch K. and Sousa A.A.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001960708&doi=10.5220%2f0013308400003912&partnerID=40&md5=cb416a11c795ea8081730f6f339a0b4b},
doi = {10.5220/0013308400003912},
isbn = {21845921 (ISSN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. Int. Jt. Conf. Comput. Vis. Imaging Comput. Graph. Theory Appl.},
volume = {1},
pages = {938–946},
publisher = {Science and Technology Publications, Lda},
abstract = {Generative artificial intelligence (GenAI) models have advanced various applications with their ability to generate diverse forms of information, including text, images, audio, video, and 3D models. In visual computing, their primary applications have focused on creating graphic content and enabling data visualization on traditional desktop interfaces, which help automate visual analytics (VA) processes. With the rise of affordable immersive technologies, such as virtual reality (VR), augmented reality (AR), and mixed reality (MR), immersive analytics (IA) has been an emerging field offering unique opportunities for deeper engagement and understanding of complex data in immersive environments (IEs). However, IA system development remains resource-intensive and requires significant expertise, while integrating GenAI capabilities into IA is still under early exploration. Therefore, based on an analysis of recent publications in these fields, this position paper investigates how GenAI can support future IA systems for more effective data exploration with immersive experiences. Specifically, we discuss potential directions and key issues concerning future GenAI-supported IA applications. © 2025 by SCITEPRESS–Science and Technology Publications, Lda.},
keywords = {Extended reality, generative artificial intelligence, Immersive analytics, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}
Shawash, J.; Thibault, M.; Hamari, J.
Who Killed Helene Pumpulivaara?: AI-Assisted Content Creation and XR Implementation for Interactive Built Heritage Storytelling Proceedings Article
In: IMX - Proc. ACM Int. Conf. Interact. Media Experiences, pp. 377–379, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071391-0 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Built heritage, Content creation, Digital heritage, Digital Interpretation, Extended reality, Human computer interaction, Human engineering, Industrial Heritage, Interactive computer graphics, Interactive computer systems, Mobile photographies, Narrative Design, Narrative designs, Production pipelines, Uncanny valley, Virtual Reality
@inproceedings{shawash_who_2025,
title = {Who Killed Helene Pumpulivaara?: AI-Assisted Content Creation and XR Implementation for Interactive Built Heritage Storytelling},
author = {J. Shawash and M. Thibault and J. Hamari},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105008003446&doi=10.1145%2f3706370.3731703&partnerID=40&md5=bc8a8d221abcf6c560446979fbd06cbc},
doi = {10.1145/3706370.3731703},
isbn = {979-840071391-0 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IMX - Proc. ACM Int. Conf. Interact. Media Experiences},
pages = {377–379},
publisher = {Association for Computing Machinery, Inc},
abstract = {This demo presents "Who Killed Helene Pumpulivaara?", an innovative interactive heritage experience that combines crime mystery narrative with XR technology to address key challenges in digital heritage interpretation. Our work makes six significant contributions: (1) the discovery of a "Historical Uncanny Valley"effect where varying fidelity levels between AI-generated and authentic content serve as implicit markers distinguishing fact from interpretation; (2) an accessible production pipeline combining mobile photography with AI tools that democratizes XR heritage creation for resource-limited institutions; (3) a spatial storytelling approach that effectively counters decontextualization in digital heritage; (4) a multi-platform implementation strategy across web and VR environments; (5) a practical model for AI-assisted heritage content creation balancing authenticity with engagement; and (6) a pathway toward spatial augmented reality for future heritage interpretation. Using the historic Finlayson Factory in Tampere, Finland as a case study, our implementation demonstrates how emerging technologies can enrich the authenticity of heritage experiences, fostering deeper emotional connections between visitors and the histories embedded in place. © 2025 Copyright held by the owner/author(s).},
keywords = {Artificial intelligence, Augmented Reality, Built heritage, Content creation, Digital heritage, Digital Interpretation, Extended reality, Human computer interaction, Human engineering, Industrial Heritage, Interactive computer graphics, Interactive computer systems, Mobile photographies, Narrative Design, Narrative designs, Production pipelines, Uncanny valley, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Tang, M.; Nikolaenko, M.; Alrefai, A.; Kumar, A.
Metaverse and Digital Twins in the Age of AI and Extended Reality Journal Article
In: Architecture, vol. 5, no. 2, 2025, ISSN: 26738945 (ISSN).
Abstract | Links | BibTeX | Tags: AI, digital twin, Extended reality, Metaverse
@article{tang_metaverse_2025,
title = {Metaverse and Digital Twins in the Age of AI and Extended Reality},
author = {M. Tang and M. Nikolaenko and A. Alrefai and A. Kumar},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105008903949&doi=10.3390%2farchitecture5020036&partnerID=40&md5=3b05b81a0cf25d3c441d4701a7749d66},
doi = {10.3390/architecture5020036},
issn = {26738945 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Architecture},
volume = {5},
number = {2},
abstract = {This paper explores the evolving relationship between Digital Twins (DT) and the Metaverse, two foundational yet often conflated digital paradigms in digital architecture. While DTs function as mirrored models of real-world systems—integrating IoT, BIM, and real-time analytics to support decision-making—Metaverses are typically fictional, immersive, multi-user environments shaped by social, cultural, and speculative narratives. Through several research projects, the team investigate the divergence between DTs and Metaverses through the lens of their purpose, data structure, immersion, and interactivity, while highlighting areas of convergence driven by emerging technologies in Artificial Intelligence (AI) and Extended Reality (XR).This study aims to investigate the convergence of DTs and the Metaverse in digital architecture, examining how emerging technologies—such as AI, XR, and Large Language Models (LLMs)—are blurring their traditional boundaries. By analyzing their divergent purposes, data structures, and interactivity modes, as well as hybrid applications (e.g., data-integrated virtual environments and AI-driven collaboration), this study seeks to define the opportunities and challenges of this integration for architectural design, decision-making, and immersive user experiences. Our research spans multiple projects utilizing XR and AI to develop DT and the Metaverse. The team assess the capabilities of AI in DT environments, such as reality capture and smart building management. Concurrently, the team evaluates metaverse platforms for online collaboration and architectural education, focusing on features facilitating multi-user engagement. The paper presents evaluations of various virtual environment development pipelines, comparing traditional BIM+IoT workflows with novel approaches such as Gaussian Splatting and generative AI for content creation. The team further explores the integration of Large Language Models (LLMs) in both domains, such as virtual agents or LLM-powered Non-Player-Controlled Characters (NPC), enabling autonomous interaction and enhancing user engagement within spatial environments. Finally, the paper argues that DTs and Metaverse’s once-distinct boundaries are becoming increasingly porous. Hybrid digital spaces—such as virtual buildings with data-integrated twins and immersive, social metaverses—demonstrate this convergence. As digital environments mature, architects are uniquely positioned to shape these dual-purpose ecosystems, leveraging AI, XR, and spatial computing to fuse data-driven models with immersive and user-centered experiences. © 2025 by the authors.},
keywords = {AI, digital twin, Extended reality, Metaverse},
pubstate = {published},
tppubtype = {article}
}
Stroinski, M.; Kwarciak, K.; Kowalewski, M.; Hemmerling, D.; Frier, W.; Georgiou, O.
Text-to-Haptics: Enhancing Multisensory Storytelling through Emotionally Congruent Midair Haptics Journal Article
In: Advanced Intelligent Systems, vol. 7, no. 4, 2025, ISSN: 26404567 (ISSN).
Abstract | Links | BibTeX | Tags: Audiovisual, Augmented Reality, Extended reality, Haptic interfaces, Haptics, Haptics interfaces, HMI, hybrid AI, Hybrid artificial intelligences, Metaverses, Mixed reality, Multisensory, Natural Language Processing, perception, Sentiment Analysis, Sound speech, Special issue and section, Speech enhancement, Virtual environments, Visual elements
@article{stroinski_text–haptics_2025,
title = {Text-to-Haptics: Enhancing Multisensory Storytelling through Emotionally Congruent Midair Haptics},
author = {M. Stroinski and K. Kwarciak and M. Kowalewski and D. Hemmerling and W. Frier and O. Georgiou},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002269591&doi=10.1002%2faisy.202400758&partnerID=40&md5=a4c8ce7a01c9bc90d9805a81d34df982},
doi = {10.1002/aisy.202400758},
issn = {26404567 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Advanced Intelligent Systems},
volume = {7},
number = {4},
abstract = {In multisensory storytelling, the integration of touch, sound, speech, and visual elements plays a crucial role in enhancing the narrative immersion and audience engagement. In light of this, this article presents a scalable and intelligent hybrid artificial intelligence (AI) method that uses emotional text analysis for deciding when and what midair haptics to display alongside audiovisual content generated by latent stable diffusion methods. Then, a user study involving 40 participants is described, the results of which suggest that the proposed approach enhances the audience level of engagement as they experience a short AI-generated multisensory (audio–visual–haptic) story. © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH.},
keywords = {Audiovisual, Augmented Reality, Extended reality, Haptic interfaces, Haptics, Haptics interfaces, HMI, hybrid AI, Hybrid artificial intelligences, Metaverses, Mixed reality, Multisensory, Natural Language Processing, perception, Sentiment Analysis, Sound speech, Special issue and section, Speech enhancement, Virtual environments, Visual elements},
pubstate = {published},
tppubtype = {article}
}
2024
Samson, J.; Lameras, P.; Taylor, N.; Kneafsey, R.
Fostering a Co-creation Process for the Development of an Extended Reality Healthcare Education Resource Proceedings Article
In: M.E., Auer; T., Tsiatsos (Ed.): Lect. Notes Networks Syst., pp. 205–212, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 23673370 (ISSN); 978-303156074-3 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Co-creation, Creation process, Diagnosis, Education computing, Education resource, Extended reality, Health care education, Hospitals, Immersive, Inter professionals, Interprofessional Healthcare Education, Software products, Students, Virtual patients
@inproceedings{samson_fostering_2024,
title = {Fostering a Co-creation Process for the Development of an Extended Reality Healthcare Education Resource},
author = {J. Samson and P. Lameras and N. Taylor and R. Kneafsey},
editor = {Auer M.E. and Tsiatsos T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189759614&doi=10.1007%2f978-3-031-56075-0_20&partnerID=40&md5=6ae832882a2e224094c1beb81c925333},
doi = {10.1007/978-3-031-56075-0_20},
isbn = {23673370 (ISSN); 978-303156074-3 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Networks Syst.},
volume = {937 LNNS},
pages = {205–212},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The aim of this research is to create an immersive healthcare education resource using an extended reality (XR) platform. This platform leverages an existing software product, incorporating virtual patients with conversational capabilities driven by artificial intelligence (AI). The initial stage produced an early prototype focused on assessing an elderly virtual patient experiencing frailty. This scenario encompasses the hospital admission to post-discharge care at home, involving various healthcare professionals such as paramedics, emergency clinicians, diagnostic radiographers, geriatricians, physiotherapists, occupational therapists, nurses, operating department practitioners, dietitians, and social workers. The plan moving forward is to refine and expand this prototype through a co-creation with diverse stakeholders. The refinement process will include the introduction of updated scripts into the standard AI model. Furthermore, these scripts will be tested against a new hybrid model that combines generative AI. Ultimately, this resource will be co-designed to create a learning activity tailored for occupational therapy and physiotherapy students. This activity will undergo testing with a cohort of students, and the outcomes of this research are expected to inform the future development of interprofessional virtual simulated placements (VSPs). These placements will complement traditional clinical learning experiences, offering students an immersive environment to enhance their skills and knowledge in the healthcare field. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Artificial intelligence, Co-creation, Creation process, Diagnosis, Education computing, Education resource, Extended reality, Health care education, Hospitals, Immersive, Inter professionals, Interprofessional Healthcare Education, Software products, Students, Virtual patients},
pubstate = {published},
tppubtype = {inproceedings}
}
Vasic, I.; Fill, H. -G.; Quattrini, R.; Pierdicca, R.
LLM-Aided Museum Guide: Personalized Tours Based on User Preferences Proceedings Article
In: L.T., De Paolis; P., Arpaia; M., Sacco (Ed.): Lect. Notes Comput. Sci., pp. 249–262, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303171709-3 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence techniques, Automated process, Cultural heritages, Extended reality, Language Model, Large language model, large language models, Modeling languages, Museum guide, User's preferences, Virtual environments, Virtual museum, Virtual museums, Virtual tour
@inproceedings{vasic_llm-aided_2024,
title = {LLM-Aided Museum Guide: Personalized Tours Based on User Preferences},
author = {I. Vasic and H. -G. Fill and R. Quattrini and R. Pierdicca},
editor = {De Paolis L.T. and Arpaia P. and Sacco M.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205127699&doi=10.1007%2f978-3-031-71710-9_18&partnerID=40&md5=fba73e38a432e0749b8e79197ef85310},
doi = {10.1007/978-3-031-71710-9_18},
isbn = {03029743 (ISSN); 978-303171709-3 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15029 LNCS},
pages = {249–262},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The quick development of generative artificial intelligence (GenAI) techniques is a promising step toward automated processes in the field of cultural heritage (CH). The recent rise of powerful Large Language Models (LLMs) like ChatGPT has made them a commonly utilized tool for a wide range of tasks across various fields. In this paper, we introduce LLMs as a guide in the three-dimensional (3D) panoramic virtual tour of the Civic Art Gallery of Ascoli to enable visitors to express their interest and show them the requested content. The input to our algorithm is a user request in natural language. The processing tasks are performed with the OpenAI’s Generative Pre-trained Transformer (GPT) 4o model. Requests are handled through the OpenAI’s API. We demonstrate all the functionalities within a developed local web-based application. This novel approach is capable of solving the problem of generic guided tours in the museum and offers a solution for the more automatized and personalized ones. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Artificial intelligence techniques, Automated process, Cultural heritages, Extended reality, Language Model, Large language model, large language models, Modeling languages, Museum guide, User's preferences, Virtual environments, Virtual museum, Virtual museums, Virtual tour},
pubstate = {published},
tppubtype = {inproceedings}
}
Clocchiatti, A.; Fumero, N.; Soccini, A. M.
Character Animation Pipeline based on Latent Diffusion and Large Language Models Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 398–405, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835037202-1 (ISBN).
Abstract | Links | BibTeX | Tags: Animation, Animation pipeline, Artificial intelligence, Augmented Reality, Character animation, Computational Linguistics, Computer animation, Deep learning, Diffusion, E-Learning, Extended reality, Film production, Generative art, Language Model, Learning systems, Learning techniques, Natural language processing systems, Pipelines, Production pipelines, Virtual Reality
@inproceedings{clocchiatti_character_2024,
title = {Character Animation Pipeline based on Latent Diffusion and Large Language Models},
author = {A. Clocchiatti and N. Fumero and A. M. Soccini},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187217072&doi=10.1109%2fAIxVR59861.2024.00067&partnerID=40&md5=d88b9ba7c80d49b60fd0d7acd5e7c4f0},
doi = {10.1109/AIxVR59861.2024.00067},
isbn = {979-835037202-1 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {398–405},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Artificial intelligence and deep learning techniques are revolutionizing the film production pipeline. The majority of the current screenplay-to-animation pipelines focus on understanding the screenplay through natural language processing techniques, and on the generation of the animation through custom engines, missing the possibility to customize the characters. To address these issues, we propose a high-level pipeline for generating 2D characters and animations starting from screenplays, through a combination of Latent Diffusion Models and Large Language Models. Our approach uses ChatGPT to generate character descriptions starting from the screenplay. Then, using that data, it generates images of custom characters with Stable Diffusion and animates them according to their actions in different scenes. The proposed approach avoids well-known problems in generative AI tools such as temporal inconsistency and lack of control on the outcome. The results suggest that the pipeline is consistent and reliable, benefiting industries ranging from film production to virtual, augmented and extended reality content creation. © 2024 IEEE.},
keywords = {Animation, Animation pipeline, Artificial intelligence, Augmented Reality, Character animation, Computational Linguistics, Computer animation, Deep learning, Diffusion, E-Learning, Extended reality, Film production, Generative art, Language Model, Learning systems, Learning techniques, Natural language processing systems, Pipelines, Production pipelines, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Haramina, E.; Paladin, M.; Petričušić, Z.; Posarić, F.; Drobnjak, A.; Botički, I.
Learning Algorithms Concepts in a Virtual Reality Escape Room Proceedings Article
In: S., Babic; Z., Car; M., Cicin-Sain; D., Cisic; P., Ergovic; T.G., Grbac; V., Gradisnik; S., Gros; A., Jokic; A., Jovic; D., Jurekovic; T., Katulic; M., Koricic; V., Mornar; J., Petrovic; K., Skala; D., Skvorc; V., Sruk; M., Svaco; E., Tijan; N., Vrcek; B., Vrdoljak (Ed.): ICT Electron. Conv., MIPRO - Proc., pp. 2057–2062, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835038249-5 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Computational complexity, Computer generated three dimensional environment, E-Learning, Education, Escape room, Extended reality, generative artificial intelligence, Learn+, Learning, Learning algorithms, Learning systems, Puzzle, puzzles, user experience, User study, User testing, Users' experiences, Virtual Reality
@inproceedings{haramina_learning_2024,
title = {Learning Algorithms Concepts in a Virtual Reality Escape Room},
author = {E. Haramina and M. Paladin and Z. Petričušić and F. Posarić and A. Drobnjak and I. Botički},
editor = {Babic S. and Car Z. and Cicin-Sain M. and Cisic D. and Ergovic P. and Grbac T.G. and Gradisnik V. and Gros S. and Jokic A. and Jovic A. and Jurekovic D. and Katulic T. and Koricic M. and Mornar V. and Petrovic J. and Skala K. and Skvorc D. and Sruk V. and Svaco M. and Tijan E. and Vrcek N. and Vrdoljak B.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198221737&doi=10.1109%2fMIPRO60963.2024.10569447&partnerID=40&md5=8a94d92d989d1f0feb84eba890945de8},
doi = {10.1109/MIPRO60963.2024.10569447},
isbn = {979-835038249-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {ICT Electron. Conv., MIPRO - Proc.},
pages = {2057–2062},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Although the standard way to learn algorithms is by coding, learning through games is another way to obtain knowledge while having fun. Virtual reality is a computer-generated three-dimensional environment in which the player is fully immersed by having external stimuli mostly blocked out. In the game presented in this paper, players are enhancing their algorithms skills by playing an escape room game. The goal is to complete the room within the designated time by solving puzzles. The puzzles change for every playthrough with the use of generative artificial intelligence to provide every player with a unique experience. There are multiple types of puzzles such as. time complexity, sorting algorithms, searching algorithms, and code execution. The paper presents the results of a study indicating students' preference for learning through gaming as a method of acquiring algorithms knowledge. © 2024 IEEE.},
keywords = {Artificial intelligence, Computational complexity, Computer generated three dimensional environment, E-Learning, Education, Escape room, Extended reality, generative artificial intelligence, Learn+, Learning, Learning algorithms, Learning systems, Puzzle, puzzles, user experience, User study, User testing, Users' experiences, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Artizzu, V.; Carcangiu, A.; Manca, M.; Mattioli, A.; Mereu, J.; Paternò, F.; Santoro, C.; Simeoli, L.; Spano, L. D.
End-User Development for eXtended Reality using a multimodal Intelligent Conversational Agent Proceedings Article
In: N., Wang; A., Bellucci; C., Anthes; P., Daeijavad; J., Friedl-Knirsch; F., Maurer; F., Pointecker; L.D., Spano (Ed.): CEUR Workshop Proc., CEUR-WS, 2024, ISBN: 16130073 (ISSN).
Abstract | Links | BibTeX | Tags: Condition, Context, End-User Development, Event-condition-action, Extended reality, Immersive authoring, Language Model, Large language model, Meta-design, multimodal input, Multimodal inputs, Rule, rules, User interfaces
@inproceedings{artizzu_end-user_2024,
title = {End-User Development for eXtended Reality using a multimodal Intelligent Conversational Agent},
author = {V. Artizzu and A. Carcangiu and M. Manca and A. Mattioli and J. Mereu and F. Paternò and C. Santoro and L. Simeoli and L. D. Spano},
editor = {Wang N. and Bellucci A. and Anthes C. and Daeijavad P. and Friedl-Knirsch J. and Maurer F. and Pointecker F. and Spano L.D.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196077262&partnerID=40&md5=3d5f022f30a1f0e3e5e81133d07823b5},
isbn = {16130073 (ISSN)},
year = {2024},
date = {2024-01-01},
booktitle = {CEUR Workshop Proc.},
volume = {3704},
publisher = {CEUR-WS},
abstract = {In the past years, both the research community and commercial products have proposed various solutions aiming to support end-user developers (EUDevs), namely users without extensive programming skills, to build and customize XR experiences. However, current tools may not fully eliminate the potential for user errors or misunderstandings. In this paper, we present EUD4XR, a methodology consisting of an intelligent conversational agent to provide contextual help, to EUDevs, during the authoring process. The key characteristics of this agent are its multimodality, comprehending the user’s voice, gaze, and pointing, combined with the environment status. Moreover, the agent could also demonstrate concepts, suggest components, and help explain errors further to reduce misunderstandings for end-user developers of VR/XR. © 2024 Copyright for this paper by its authors.},
keywords = {Condition, Context, End-User Development, Event-condition-action, Extended reality, Immersive authoring, Language Model, Large language model, Meta-design, multimodal input, Multimodal inputs, Rule, rules, User interfaces},
pubstate = {published},
tppubtype = {inproceedings}
}
Kapadia, N.; Gokhale, S.; Nepomuceno, A.; Cheng, W.; Bothwell, S.; Mathews, M.; Shallat, J. S.; Schultz, C.; Gupta, A.
Evaluation of Large Language Model Generated Dialogues for an AI Based VR Nurse Training Simulator Proceedings Article
In: J.Y.C., Chen; G., Fragomeni (Ed.): Lect. Notes Comput. Sci., pp. 200–212, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303161040-0 (ISBN).
Abstract | Links | BibTeX | Tags: Bard, ChatGPT, ClaudeAI, Clinical research, Computational Linguistics, Dialogue Generation, Dialogue generations, Education computing, Extended reality, Health care education, Healthcare Education, Language Model, Language processing, Large language model, large language models, Natural Language Processing, Natural language processing systems, Natural languages, Nurse Training Simulation, Nursing, Patient avatar, Patient Avatars, Semantics, Students, Training simulation, Virtual Reality
@inproceedings{kapadia_evaluation_2024,
title = {Evaluation of Large Language Model Generated Dialogues for an AI Based VR Nurse Training Simulator},
author = {N. Kapadia and S. Gokhale and A. Nepomuceno and W. Cheng and S. Bothwell and M. Mathews and J. S. Shallat and C. Schultz and A. Gupta},
editor = {Chen J.Y.C. and Fragomeni G.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196200653&doi=10.1007%2f978-3-031-61041-7_13&partnerID=40&md5=8890a8d0c289fdf6e7ab82e105249097},
doi = {10.1007/978-3-031-61041-7_13},
isbn = {03029743 (ISSN); 978-303161040-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {14706 LNCS},
pages = {200–212},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {This paper explores the efficacy of Large Language Models (LLMs) in generating dialogues for patient avatars in Virtual Reality (VR) nurse training simulators. With the integration of technology in healthcare education evolving rapidly, the potential of NLP to enhance nurse training through realistic patient interactions presents a significant opportunity. Our study introduces a novel LLM-based dialogue generation system, leveraging models such as ChatGPT, GoogleBard, and ClaudeAI. We detail the development of our script generation system, which was a collaborative endeavor involving nurses, technical artists, and developers. The system, tested on the Meta Quest 2 VR headset, integrates complex dialogues created through a synthesis of clinical expertise and advanced NLP, aimed at simulating real-world nursing scenarios. Through a comprehensive evaluation involving lexical and semantic similarity tests compared to clinical expert-generated scripts, we assess the potential of LLMs as suitable alternatives for script generation. The findings aim to contribute to the development of a more interactive and effective VR nurse training simulator, enhancing communication skills among nursing students for improved patient care outcomes. This research underscores the importance of advanced NLP applications in healthcare education, offering insights into the practicality and limitations of employing LLMs in clinical training environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Bard, ChatGPT, ClaudeAI, Clinical research, Computational Linguistics, Dialogue Generation, Dialogue generations, Education computing, Extended reality, Health care education, Healthcare Education, Language Model, Language processing, Large language model, large language models, Natural Language Processing, Natural language processing systems, Natural languages, Nurse Training Simulation, Nursing, Patient avatar, Patient Avatars, Semantics, Students, Training simulation, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Vallasciani, G.; Stacchio, L.; Cascarano, P.; Marfia, G.
CreAIXR: Fostering Creativity with Generative AI in XR environments Proceedings Article
In: Proc. - IEEE Int. Conf. Metaverse Comput., Netw., Appl., MetaCom, pp. 1–8, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833151599-7 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Creative thinking, Creatives, Creativity, Extended reality, Generative adversarial networks, generative artificial intelligence, Immersive, Modern technologies, Research questions, Stable Diffusion, Web technologies
@inproceedings{vallasciani_creaixr_2024,
title = {CreAIXR: Fostering Creativity with Generative AI in XR environments},
author = {G. Vallasciani and L. Stacchio and P. Cascarano and G. Marfia},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211481990&doi=10.1109%2fMetaCom62920.2024.00034&partnerID=40&md5=002e25a2d4ddb170e21029b27c157b28},
doi = {10.1109/MetaCom62920.2024.00034},
isbn = {979-833151599-7 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Conf. Metaverse Comput., Netw., Appl., MetaCom},
pages = {1–8},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Fostering creativity is paramount for cultivating innovative minds capable of addressing complex challenges. Modern technologies like eXtended Reality (XR) and Artificial Intelligence (AI) may nurture grounds supporting creative thinking by providing immersive and manipulable environments. An open research question is how such technologies may best lead to such a possible result. To help move one step closer to an answer, we present a portable XR platform, namely CreAIXR, where objects may be creatively defined and manipulated with AI paradigms. CreAIXR leverages web technologies, XR, and generative AI where creatives are immersed in a composable experience, allowing them to collaborate and customize an immersive environment through XR paradigms and generative AI. We here describe this system along with its validation through experiments carried out with a group of individuals having a background in the field of visual arts. © 2024 IEEE.},
keywords = {Artificial intelligence, Creative thinking, Creatives, Creativity, Extended reality, Generative adversarial networks, generative artificial intelligence, Immersive, Modern technologies, Research questions, Stable Diffusion, Web technologies},
pubstate = {published},
tppubtype = {inproceedings}
}
Sahebnasi, M. J.; Farrokhimaleki, M.; Wang, N.; Zhao, R.; Maurer, F.
Exploring the Potential of Generative AI in Prototyping XR Applications Proceedings Article
In: N., Wang; A., Bellucci; C., Anthes; P., Daeijavad; J., Friedl-Knirsch; F., Maurer; F., Pointecker; L.D., Spano (Ed.): CEUR Workshop Proc., CEUR-WS, 2024, ISBN: 16130073 (ISSN).
Abstract | Links | BibTeX | Tags: AI techniques, Extended reality, generative artificial intelligence, Prototyping, Prototyping process, Scene composition, Software prototyping, State of the art
@inproceedings{sahebnasi_exploring_2024,
title = {Exploring the Potential of Generative AI in Prototyping XR Applications},
author = {M. J. Sahebnasi and M. Farrokhimaleki and N. Wang and R. Zhao and F. Maurer},
editor = {Wang N. and Bellucci A. and Anthes C. and Daeijavad P. and Friedl-Knirsch J. and Maurer F. and Pointecker F. and Spano L.D.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196093148&partnerID=40&md5=a6264c6add18b5cd0ff99a0d3b25b822},
isbn = {16130073 (ISSN)},
year = {2024},
date = {2024-01-01},
booktitle = {CEUR Workshop Proc.},
volume = {3704},
publisher = {CEUR-WS},
abstract = {This paper presents the initial stage of our research to develop a novel approach to streamline the prototyping of Extended Reality applications using generative AI models. We introduce a tool that leverages state-of-the-art generative AI techniques to facilitate the prototyping process, including 3D asset generation and scene composition. The tool allows users to verbally articulate their prototypes, which are then generated by an AI model. We aim to make the development of XR applications more efficient by empowering the designers to gather early feedback from users through rapidly developed prototypes. © 2024 Copyright for this paper by its authors.},
keywords = {AI techniques, Extended reality, generative artificial intelligence, Prototyping, Prototyping process, Scene composition, Software prototyping, State of the art},
pubstate = {published},
tppubtype = {inproceedings}
}
Chandrashekar, N. Donekal; Lee, A.; Azab, M.; Gracanin, D.
Understanding User Behavior for Enhancing Cybersecurity Training with Immersive Gamified Platforms Journal Article
In: Information (Switzerland), vol. 15, no. 12, 2024, ISSN: 20782489 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Critical infrastructures, Cyber attacks, Cyber security, Cyber systems, Cyber-attacks, Cybersecurity, Decisions makings, Digital infrastructures, digital twin, Extended reality, Gamification, Immersive, Network Security, simulation, Technical vulnerabilities, Training, user behavior, User behaviors
@article{donekal_chandrashekar_understanding_2024,
title = {Understanding User Behavior for Enhancing Cybersecurity Training with Immersive Gamified Platforms},
author = {N. Donekal Chandrashekar and A. Lee and M. Azab and D. Gracanin},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213435167&doi=10.3390%2finfo15120814&partnerID=40&md5=134c43c7238bae4923468bc6e46c860d},
doi = {10.3390/info15120814},
issn = {20782489 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Information (Switzerland)},
volume = {15},
number = {12},
abstract = {In modern digital infrastructure, cyber systems are foundational, making resilience against sophisticated attacks essential. Traditional cybersecurity defenses primarily address technical vulnerabilities; however, the human element, particularly decision-making during cyber attacks, adds complexities that current behavioral studies fail to capture adequately. Existing approaches, including theoretical models, game theory, and simulators, rely on retrospective data and static scenarios. These methods often miss the real-time, context-specific nature of user responses during cyber threats. To address these limitations, this work introduces a framework that combines Extended Reality (XR) and Generative Artificial Intelligence (Gen-AI) within a gamified platform. This framework enables continuous, high-fidelity data collection on user behavior in dynamic attack scenarios. It includes three core modules: the Player Behavior Module (PBM), Gamification Module (GM), and Simulation Module (SM). Together, these modules create an immersive, responsive environment for studying user interactions. A case study in a simulated critical infrastructure environment demonstrates the framework’s effectiveness in capturing realistic user behaviors under cyber attack, with potential applications for improving response strategies and resilience across critical sectors. This work lays the foundation for adaptive cybersecurity training and user-centered development across critical infrastructure. © 2024 by the authors.},
keywords = {Artificial intelligence, Critical infrastructures, Cyber attacks, Cyber security, Cyber systems, Cyber-attacks, Cybersecurity, Decisions makings, Digital infrastructures, digital twin, Extended reality, Gamification, Immersive, Network Security, simulation, Technical vulnerabilities, Training, user behavior, User behaviors},
pubstate = {published},
tppubtype = {article}
}
Lăzăroiu, G.; Gedeon, T.; Valaskova, K.; Vrbka, J.; Šuleř, P.; Zvarikova, K.; Kramarova, K.; Rowland, Z.; Stehel, V.; Gajanova, L.; Horák, J.; Grupac, M.; Caha, Z.; Blazek, R.; Kovalova, E.; Nagy, M.
In: Equilibrium. Quarterly Journal of Economics and Economic Policy, vol. 19, no. 3, pp. 719–748, 2024, ISSN: 1689765X (ISSN).
Abstract | Links | BibTeX | Tags: cognitive digital twin, cyber–physical manufacturing system, Extended reality, generative artificial intelligence, immersive industrial metaverse, Internet of Robotic Things, sensor, simulation modeling
@article{lazaroiu_cognitive_2024,
title = {Cognitive digital twin-based Internet of Robotic Things, multi-sensory extended reality and simulation modeling technologies, and generative artificial intelligence and cyber–physical manufacturing systems in the immersive industrial metaverse},
author = {G. Lăzăroiu and T. Gedeon and K. Valaskova and J. Vrbka and P. Šuleř and K. Zvarikova and K. Kramarova and Z. Rowland and V. Stehel and L. Gajanova and J. Horák and M. Grupac and Z. Caha and R. Blazek and E. Kovalova and M. Nagy},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205958936&doi=10.24136%2feq.3131&partnerID=40&md5=18586ac31bc9a2614d6ae62a3be1aa07},
doi = {10.24136/eq.3131},
issn = {1689765X (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Equilibrium. Quarterly Journal of Economics and Economic Policy},
volume = {19},
number = {3},
pages = {719–748},
abstract = {Research background:Connected Internet of Robotic Things (IoRT) and cyber-physical process monitoring systems, industrial big data and real-time event analytics, and machine and deep learning algorithms articulate digital twin smart factories in relation to deep learning-assisted smart process planning, Internet of Things (IoT)-based real-time production logistics, and enterprise resource coordination. Robotic cooperative behaviors and 3D assembly operations in collaborative industrial environments require ambient environment monitoring and geospatial simulation tools, computer vision and spatial mapping algorithms, and generative artificial intelligence (AI) planning software. Flexible industrial and cloud computing environments necessitate sensing and actuation capabilities, cognitive data visualization and sensor fusion tools, and image recognition and computer vision technologies so as to lead to tangible business outcomes. Purpose of the article: We show that generative AI and cyber–physical manufacturing sys-tems, fog and edge computing tools, and task scheduling and computer vision algorithms are instrumental in the interactive economics of industrial metaverse. Generative AI-based digital twin industrial metaverse develops on IoRT and production management systems, multi-sensory extended reality and simulation modeling technologies, and machine and deep learning algorithms for big data-driven decision-making and image recognition processes. Virtual simulation modeling and deep reinforcement learning tools, autonomous manufacturing and virtual equipment systems, and deep learning-based object detection and spatial computing technologies can be leveraged in networked immersive environments for industrial big data processing. Methods: Evidence appraisal checklists and citation management software deployed for justifying inclusion or exclusion reasons and data collection and analysis comprise: Abstrackr, Colandr, Covidence, EPPI Reviewer, JBI-SUMARI, Rayyan, RobotReviewer, SR Accelerator, and Systematic Review Toolbox. Findings & value added: Modal actuators and sensors, robot trajectory planning and computational intelligence tools, and generative AI and cyber–physical manufacturing systems enable scalable data computation processes in smart virtual environments. Ambient intelligence and remote big data management tools, cloud-based robotic cooperation and industrial cyber-physical systems, and environment mapping and spatial computing algorithms improve IoT-based real-time production logistics and cooperative multi-agent controls in smart networked factories. Context recognition and data acquisition tools, generative AI and cyber– physical manufacturing systems, and deep and machine learning algorithms shape smart factories in relation to virtual path lines, collision-free motion planning, and coordinated and unpredictable smart manufacturing and robotic perception tasks, increasing economic per-formance. This collective writing cumulates and debates upon the most recent and relevant literature on cognitive digital twin-based Internet of Robotic Things, multi-sensory extended reality and simulation modeling technologies, and generative AI and cyber–physical manufacturing systems in the immersive industrial metaverse by use of evidence appraisal checklists and citation management software. © Instytut Badań Gospodarczych.},
keywords = {cognitive digital twin, cyber–physical manufacturing system, Extended reality, generative artificial intelligence, immersive industrial metaverse, Internet of Robotic Things, sensor, simulation modeling},
pubstate = {published},
tppubtype = {article}
}
Baldry, M. K.; Happa, J.; Steed, A.; Smith, S.; Glencross, M.
From Embodied Abuse to Mass Disruption: Generative, Inter-Reality Threats in Social, Mixed-Reality Platforms Journal Article
In: Digital Threats: Research and Practice, vol. 5, no. 4, 2024, ISSN: 25765337 (ISSN).
Abstract | Links | BibTeX | Tags: Abuse, Augmented Reality, Cyber security, Cybersecurity, Extended reality, Game, Games, Generative adversarial networks, Harassment, Harm, harms, Mixed reality, risk, Social engineering, Social gaming, Social platform, social platforms, Social psychology, Virtual environments, Virtual Reality
@article{baldry_embodied_2024,
title = {From Embodied Abuse to Mass Disruption: Generative, Inter-Reality Threats in Social, Mixed-Reality Platforms},
author = {M. K. Baldry and J. Happa and A. Steed and S. Smith and M. Glencross},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85212265918&doi=10.1145%2f3696015&partnerID=40&md5=d3b42f4f3875846fcdc6758ab20708cc},
doi = {10.1145/3696015},
issn = {25765337 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Digital Threats: Research and Practice},
volume = {5},
number = {4},
abstract = {Extended Reality (XR) platforms can expose users to novel attacks including embodied abuse and/or AI attacks-at-scale. The expanded attack surfaces of XR technologies may expose users of shared online platforms to psychological/social and physiological harms via embodied interactions with potentially millions of other humans or artificial humans, causing what we define as an inter-reality attack. The past 20 years have demonstrated how social and other harms (e.g., bullying, assault and stalking) can and do shift to digital social media and gaming platforms. XR technologies becoming more mainstream has led to investigations of ethical and technical consequences of these expanded input surfaces. However, there is limited literature that investigates social attacks, particularly towards vulnerable communities, and how AI technologies may accelerate generative attacks-at-scale. This article employs human-centred research methods and a harms-centred Cybersecurity framework to co-design a testbed of socio-technical attack scenarios in XR social gaming platforms. It uses speculative fiction to further extrapolate how these could reach attacks-at-scale by applying generative AI techniques. It develops an Inter-Reality Threat Model to outline how actions in virtual environments can impact on the real-world. As AI capability continues to rapidly develop, this article articulates the urgent need to consider a future where XR-AI attacks-at-scale could become commonplace. © 2024 Copyright held by the owner/author(s).},
keywords = {Abuse, Augmented Reality, Cyber security, Cybersecurity, Extended reality, Game, Games, Generative adversarial networks, Harassment, Harm, harms, Mixed reality, risk, Social engineering, Social gaming, Social platform, social platforms, Social psychology, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}