AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Cao, X.; Ju, K. P.; Li, C.; Jain, D.
SceneGenA11y: How can Runtime Generative tools improve the Accessibility of a Virtual 3D Scene? Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2025, ISBN: 979-840071395-8 (ISBN).
Abstract | Links | BibTeX | Tags: 3D application, 3D modeling, 3D scenes, Accessibility, BLV, DHH, Discrete event simulation, Generative AI, Generative tools, Interactive computer graphics, One dimensional, Runtimes, Three dimensional computer graphics, Video-games, Virtual 3d scene, virtual 3D scenes, Virtual environments, Virtual Reality
@inproceedings{cao_scenegena11y_2025,
title = {SceneGenA11y: How can Runtime Generative tools improve the Accessibility of a Virtual 3D Scene?},
author = {X. Cao and K. P. Ju and C. Li and D. Jain},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005772656&doi=10.1145%2f3706599.3720265&partnerID=40&md5=9b0bf29c3e89b70efa2d6a3e740829fb},
doi = {10.1145/3706599.3720265},
isbn = {979-840071395-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {With the popularity of virtual 3D applications, from video games to educational content and virtual reality scenarios, the accessibility of 3D scene information is vital to ensure inclusive and equitable experiences for all. Previous work include information substitutions like audio description and captions, as well as personalized modifications, but they could only provide predefined accommodations. In this work, we propose SceneGenA11y, a system that responds to the user’s natural language prompts to improve accessibility of a 3D virtual scene in runtime. The system primes LLM agents with accessibility-related knowledge, allowing users to explore the scene and perform verifiable modifications to improve accessibility. We conducted a preliminary evaluation of our system with three blind and low-vision people and three deaf and hard-of-hearing people. The results show that our system is intuitive to use and can successfully improve accessibility. We discussed usage patterns of the system, potential improvements, and integration into apps. We ended with highlighting plans for future work. © 2025 Copyright held by the owner/author(s).},
keywords = {3D application, 3D modeling, 3D scenes, Accessibility, BLV, DHH, Discrete event simulation, Generative AI, Generative tools, Interactive computer graphics, One dimensional, Runtimes, Three dimensional computer graphics, Video-games, Virtual 3d scene, virtual 3D scenes, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
With the popularity of virtual 3D applications, from video games to educational content and virtual reality scenarios, the accessibility of 3D scene information is vital to ensure inclusive and equitable experiences for all. Previous work include information substitutions like audio description and captions, as well as personalized modifications, but they could only provide predefined accommodations. In this work, we propose SceneGenA11y, a system that responds to the user’s natural language prompts to improve accessibility of a 3D virtual scene in runtime. The system primes LLM agents with accessibility-related knowledge, allowing users to explore the scene and perform verifiable modifications to improve accessibility. We conducted a preliminary evaluation of our system with three blind and low-vision people and three deaf and hard-of-hearing people. The results show that our system is intuitive to use and can successfully improve accessibility. We discussed usage patterns of the system, potential improvements, and integration into apps. We ended with highlighting plans for future work. © 2025 Copyright held by the owner/author(s).