AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Anvitha, K.; Durjay, T.; Sathvika, K.; Gnanendra, G.; Annamalai, S.; Natarajan, S. K.
EduBot: A Compact AI-Driven Study Assistant for Contextual Knowledge Retrieval Proceedings Article
In: Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331507756 (ISBN).
Abstract | Links | BibTeX | Tags: Chatbots, Computer aided instruction, Contextual knowledge, Curricula, Digital Education, E-Learning, Education computing, Educational Technology, Engineering education, Indexing (of information), Information Retrieval, Intelligent systems, Knowledge retrieval, LangChain Framework, Language Model, Large language model, learning experience, Learning experiences, Learning systems, LLM, PDF - Driven Chatbot, Query processing, Students, Teaching, Traditional learning, Virtual Reality
@inproceedings{anvitha_edubot_2025,
title = {EduBot: A Compact AI-Driven Study Assistant for Contextual Knowledge Retrieval},
author = {K. Anvitha and T. Durjay and K. Sathvika and G. Gnanendra and S. Annamalai and S. K. Natarajan},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105013615976&doi=10.1109%2FGINOTECH63460.2025.11077097&partnerID=40&md5=b08377283f2ea2ee406d38d1d23f1e42},
doi = {10.1109/GINOTECH63460.2025.11077097},
isbn = {9798331507756 (ISBN)},
year = {2025},
date = {2025-01-01},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In the evolving landscape of educational technology, intelligent systems are redefining traditional learning methods by enhancing accessibility, adaptability, and engagement in instructional processes. This paper presents EduBot, a PDF-Driven Chatbot developed using advanced Large Language Models (LLMs) and leveraging frameworks like LangChain, OpenAI's Chat-Gpt, and Pinecone. EduBot is designed as an interactive educational assistant, responding to student queries based on faculty-provided guidelines embedded in PDF documents. Through natural language processing, EduBot streamlines information retrieval, providing accurate, context-aware responses that foster a self- directed learning experience. By aligning with specific academic requirements and enhancing clarity in information delivery, EduBot stands as a promising tool in personalized digital learning support. This paper explores the design, implementation, and impact of EduBot, offering insights into its potential as a scalable solution for academic institutions The demand for accessible and adaptive educational tools is increasing as students seek more personalized and efficient ways to enhance their learning experience. EduBot is a cutting- edge PDF-driven chatbot designed to act as a virtual educational assistant, helping students to navigate and understand course materials by answering queries directly based on faculty guidelines. Built upon Large Language Models (LLMs), specifically utilizing frameworks such as LangChain and OpenAI's GPT-3.5, EduBot provides a sophisticated solution for integrating curated academic content into interactive learning. With its backend support from Pinecone for optimized data indexing, EduBot offers accurate and context-specific responses, facilitating a deeper level of engagement and comprehension. The average relevancy score is 80%. This paper outlines the design and deployment of EduBot, emphasizing its architecture, adaptability, and contributions to the educational landscape, where such AI- driven tools are poised to become indispensable in fostering autonomous, personalized learning environments. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Chatbots, Computer aided instruction, Contextual knowledge, Curricula, Digital Education, E-Learning, Education computing, Educational Technology, Engineering education, Indexing (of information), Information Retrieval, Intelligent systems, Knowledge retrieval, LangChain Framework, Language Model, Large language model, learning experience, Learning experiences, Learning systems, LLM, PDF - Driven Chatbot, Query processing, Students, Teaching, Traditional learning, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}