AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Paterakis, I.; Manoudaki, N.
Osmosis: Generative AI and XR for the real-time transformation of urban architectural environments Journal Article
In: International Journal of Architectural Computing, 2025, ISSN: 14780771 (ISSN), (Publisher: SAGE Publications Inc.).
Abstract | Links | BibTeX | Tags: Architectural design, Architectural environment, Artificial intelligence, Biodigital design, Case-studies, Computational architecture, Computer architecture, Extended reality, generative artificial intelligence, Immersive, Immersive environment, immersive environments, Natural language processing systems, Real- time, Urban environments, urban planning
@article{paterakis_osmosis_2025,
title = {Osmosis: Generative AI and XR for the real-time transformation of urban architectural environments},
author = {I. Paterakis and N. Manoudaki},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105014516125&doi=10.1177%2F14780771251356526&partnerID=40&md5=4bbcb09440d91899cb7d2d5d0c852507},
doi = {10.1177/14780771251356526},
issn = {14780771 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {International Journal of Architectural Computing},
abstract = {This work contributes to the evolving discourse on biodigital architecture by examining how generative artificial intelligence (AI) and extended reality (XR) systems can be combined to create immersive urban environments. Focusing on the case study of “Osmosis”, a series of large-scale public installations, this work proposes a methodological framework for real-time architectural composition in XR using diffusion models and interaction. The project reframes the architectural façade as a semi permeable membrane, through which digital content diffuses in response to environmental and user inputs. By integrating natural language prompts, multimodal input, and AI-generated visual synthesis with projection mapping, Osmosis advances a vision for urban architecture that is interactive, data-driven, and sensorially rich. The work explores new design territories where stochastic form-making and real-time responsiveness intersect, and positions AI as an augmentation of architectural creativity rather than its replacement. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: SAGE Publications Inc.},
keywords = {Architectural design, Architectural environment, Artificial intelligence, Biodigital design, Case-studies, Computational architecture, Computer architecture, Extended reality, generative artificial intelligence, Immersive, Immersive environment, immersive environments, Natural language processing systems, Real- time, Urban environments, urban planning},
pubstate = {published},
tppubtype = {article}
}
This work contributes to the evolving discourse on biodigital architecture by examining how generative artificial intelligence (AI) and extended reality (XR) systems can be combined to create immersive urban environments. Focusing on the case study of “Osmosis”, a series of large-scale public installations, this work proposes a methodological framework for real-time architectural composition in XR using diffusion models and interaction. The project reframes the architectural façade as a semi permeable membrane, through which digital content diffuses in response to environmental and user inputs. By integrating natural language prompts, multimodal input, and AI-generated visual synthesis with projection mapping, Osmosis advances a vision for urban architecture that is interactive, data-driven, and sensorially rich. The work explores new design territories where stochastic form-making and real-time responsiveness intersect, and positions AI as an augmentation of architectural creativity rather than its replacement. © 2025 Elsevier B.V., All rights reserved.