AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Jayaraman, S.; Bhavya, R.; Srihari, V.; Rajam, V. Mary Anita
TexAVi: Generating Stereoscopic VR Video Clips from Text Descriptions Proceedings Article
In: IEEE Int. Conf. Comput. Vis. Mach. Intell., CVMI, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835037687-6 (ISBN).
Abstract | Links | BibTeX | Tags: Adversarial networks, Computer simulation languages, Deep learning, Depth Estimation, Depth perception, Diffusion Model, diffusion models, Digital elevation model, Generative adversarial networks, Generative model, Generative systems, Language Model, Motion capture, Stereo image processing, Text-to-image, Training data, Video analysis, Video-clips, Virtual environments, Virtual Reality
@inproceedings{jayaraman_texavi_2024,
title = {TexAVi: Generating Stereoscopic VR Video Clips from Text Descriptions},
author = {S. Jayaraman and R. Bhavya and V. Srihari and V. Mary Anita Rajam},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85215265234&doi=10.1109%2fCVMI61877.2024.10782691&partnerID=40&md5=8e20576af67b917ecfad83873a87ef29},
doi = {10.1109/CVMI61877.2024.10782691},
isbn = {979-835037687-6 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {IEEE Int. Conf. Comput. Vis. Mach. Intell., CVMI},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {While generative models such as text-to-image, large language models and text-to-video have seen significant progress, the extension to text-to-virtual-reality remains largely unexplored, due to a deficit in training data and the complexity of achieving realistic depth and motion in virtual environments. This paper proposes an approach to coalesce existing generative systems to form a stereoscopic virtual reality video from text. Carried out in three main stages, we start with a base text-to-image model that captures context from an input text. We then employ Stable Diffusion on the rudimentary image produced, to generate frames with enhanced realism and overall quality. These frames are processed with depth estimation algorithms to create left-eye and right-eye views, which are stitched side-by-side to create an immersive viewing experience. Such systems would be highly beneficial in virtual reality production, since filming and scene building often require extensive hours of work and post-production effort. We utilize image evaluation techniques, specifically Fréchet Inception Distance and CLIP Score, to assess the visual quality of frames produced for the video. These quantitative measures establish the proficiency of the proposed method. Our work highlights the exciting possibilities of using natural language-driven graphics in fields like virtual reality simulations. © 2024 IEEE.},
keywords = {Adversarial networks, Computer simulation languages, Deep learning, Depth Estimation, Depth perception, Diffusion Model, diffusion models, Digital elevation model, Generative adversarial networks, Generative model, Generative systems, Language Model, Motion capture, Stereo image processing, Text-to-image, Training data, Video analysis, Video-clips, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Vlasov, A. V.
GALA Inspired by Klimt's Art: Text-to-image Processing with Implementation in Interaction and Perception Studies: Library and Case Examples Journal Article
In: Annual Review of CyberTherapy and Telemedicine, vol. 21, pp. 200–205, 2023, ISSN: 15548716 (ISSN).
Abstract | Links | BibTeX | Tags: AIGC, applied research, art library, Article, Artificial intelligence, benchmarking, dataset, GALA, human, Human computer interaction, Image processing, Klimt, library, life satisfaction, neuropoem, Text-to-image, Virtual Reality, Wellbeing
@article{vlasov_gala_2023,
title = {GALA Inspired by Klimt's Art: Text-to-image Processing with Implementation in Interaction and Perception Studies: Library and Case Examples},
author = {A. V. Vlasov},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182461798&partnerID=40&md5=0c3f5f4214a46db51f46f0092495eb2b},
issn = {15548716 (ISSN)},
year = {2023},
date = {2023-01-01},
journal = {Annual Review of CyberTherapy and Telemedicine},
volume = {21},
pages = {200–205},
abstract = {Objectives: (a) to develop a library with AI generated content (AIGC) based on а combinatorial scheme of prompting for interaction and perception research; (b) to show examples of AIGC implementation. The result is a public library for applied research in the cyber-psychological community (CYPSY). The Generative Art Library Abstractions (GALA) include images (Figures 1-2) based on the text-image model and inspired by the artwork of Gustav Klimt. They can be used for comparative analysis (benchmarking), end-to-end evaluation, and advanced design. This allows experimentation with complex human-computer interaction (HCI) architectures and visual communication systems, and provides creative design support for experimenting. Examples include: interactive perception of positively colored generative images; HCI dialogues using visual language; generated moods in a VR environment; brain-computer interface for HCI. Respectfully, these visualization resources are a valuable example of AIGC for next-generation R&D. Any suggestions from the CYPSY community are welcome. © 2023, Interactive Media Institute. All rights reserved.},
keywords = {AIGC, applied research, art library, Article, Artificial intelligence, benchmarking, dataset, GALA, human, Human computer interaction, Image processing, Klimt, library, life satisfaction, neuropoem, Text-to-image, Virtual Reality, Wellbeing},
pubstate = {published},
tppubtype = {article}
}
2022
Wang, A.; Gao, Z.; Lee, L. H.; Braud, T.; Hui, P.
Decentralized, not Dehumanized in the Metaverse: Bringing Utility to NFTs through Multimodal Interaction Proceedings Article
In: ACM Int. Conf. Proc. Ser., pp. 662–667, Association for Computing Machinery, 2022, ISBN: 978-145039390-4 (ISBN).
Abstract | Links | BibTeX | Tags: AI-generated art, Arts computing, Behavioral Research, Computation theory, Continuum mechanics, Decentralised, Human behaviors, Interaction, Multi-modal, multimodal, Multimodal Interaction, NFTs, Non-fungible token, Text-to-image, The metaverse
@inproceedings{wang_decentralized_2022,
title = {Decentralized, not Dehumanized in the Metaverse: Bringing Utility to NFTs through Multimodal Interaction},
author = {A. Wang and Z. Gao and L. H. Lee and T. Braud and P. Hui},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142799074&doi=10.1145%2f3536221.3558176&partnerID=40&md5=f9dee1e9e60afc71c4533cbdee0b98a7},
doi = {10.1145/3536221.3558176},
isbn = {978-145039390-4 (ISBN)},
year = {2022},
date = {2022-01-01},
booktitle = {ACM Int. Conf. Proc. Ser.},
pages = {662–667},
publisher = {Association for Computing Machinery},
abstract = {User Interaction for NFTs (Non-fungible Tokens) is gaining increasing attention. Although NFTs have been traditionally single-use and monolithic, recent applications aim to connect multimodal interaction with human behavior. This paper reviews the related technological approaches and business practices in NFT art. We highlight that multimodal interaction is a currently under-studied issue in mainstream NFT art, and conjecture that multimodal interaction is a crucial enabler for decentralization in the NFT community. We present a continuum theory and propose a framework combining a bottom-up approach with AI multimodal process. Through this framework, we put forward integrating human behavior data into generative NFT units, as "multimodal interactive NFT."Our work displays the possibilities of NFTs in the art world, beyond the traditional 2D and 3D static content. © 2022 ACM.},
keywords = {AI-generated art, Arts computing, Behavioral Research, Computation theory, Continuum mechanics, Decentralised, Human behaviors, Interaction, Multi-modal, multimodal, Multimodal Interaction, NFTs, Non-fungible token, Text-to-image, The metaverse},
pubstate = {published},
tppubtype = {inproceedings}
}