AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Zhao, Y.; Dasari, M.; Guo, T.
CleAR: Robust Context-Guided Generative Lighting Estimation for Mobile Augmented Reality Journal Article
In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 9, no. 3, 2025, ISSN: 24749567 (ISSN), (Publisher: Association for Computing Machinery).
Abstract | Links | BibTeX | Tags: Augmented Reality, Color computer graphics, Environment lighting, Estimation results, Generative model, High quality, Human engineering, Immersive, Lighting, Lighting conditions, Lighting estimation, Mobile augmented reality, Real-time refinement, Rendering (computer graphics), Statistical tests, Virtual objects, Virtual Reality
@article{zhao_clear_2025,
title = {CleAR: Robust Context-Guided Generative Lighting Estimation for Mobile Augmented Reality},
author = {Y. Zhao and M. Dasari and T. Guo},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105015452988&doi=10.1145%2F3749535&partnerID=40&md5=ed970d47cbf7f547555eca43b32cd7e7},
doi = {10.1145/3749535},
issn = {24749567 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies},
volume = {9},
number = {3},
abstract = {High-quality environment lighting is essential for creating immersive mobile augmented reality (AR) experiences. However, achieving visually coherent estimation for mobile AR is challenging due to several key limitations in AR device sensing capabilities, including low camera FoV and limited pixel dynamic ranges. Recent advancements in generative AI, which can generate high-quality images from different types of prompts, including texts and images, present a potential solution for high-quality lighting estimation. Still, to effectively use generative image diffusion models, we must address two key limitations of content quality and slow inference. In this work, we design and implement a generative lighting estimation system called CleAR that can produce high-quality, diverse environment maps in the format of 360◦ HDR images. Specifically, we design a two-step generation pipeline guided by AR environment context data to ensure the output aligns with the physical environment’s visual context and color appearance. To improve the estimation robustness under different lighting conditions, we design a real-time refinement component to adjust lighting estimation results on AR devices. To train and test our generative models, we curate a large-scale environment lighting estimation dataset with diverse lighting conditions. Through a combination of quantitative and qualitative evaluations, we show that CleAR outperforms state-of-the-art lighting estimation methods on both estimation accuracy, latency, and robustness, and is rated by 31 participants as producing better renderings for most virtual objects. For example, CleAR achieves 51% to 56% accuracy improvement on virtual object renderings across objects of three distinctive types of materials and reflective properties. CleAR produces lighting estimates of comparable or better quality in just 3.2 seconds—over 110X faster than state-of-the-art methods. Moreover, CleAR supports real-time refinement of lighting estimation results, ensuring robust and timely updates for AR applications. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Association for Computing Machinery},
keywords = {Augmented Reality, Color computer graphics, Environment lighting, Estimation results, Generative model, High quality, Human engineering, Immersive, Lighting, Lighting conditions, Lighting estimation, Mobile augmented reality, Real-time refinement, Rendering (computer graphics), Statistical tests, Virtual objects, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
2024
Do, M. D.; Dahlem, N.; Paulus, M.; Krick, M.; Steffny, L.; Werth, D.
“Furnish Your Reality” - Intelligent Mobile AR Application for Personalized Furniture Proceedings Article
In: J., Wei; G., Margetis (Ed.): Lect. Notes Comput. Sci., pp. 196–210, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303160457-7 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Augmented reality applications, Electronic commerce, Generative AI, generative artificial intelligence, Human computer interaction, Human computer interfaces, LiDAR, Mobile augmented reality, Mobile human computer interface, Mobile Human Computer Interfaces, Personalized product design, Personalized products, Phygital customer journey, Physical environments, Product design, Recommender system, Recommender systems, Sales, User centered design, User interfaces, User-centered design
@inproceedings{do_furnish_2024,
title = {“Furnish Your Reality” - Intelligent Mobile AR Application for Personalized Furniture},
author = {M. D. Do and N. Dahlem and M. Paulus and M. Krick and L. Steffny and D. Werth},
editor = {Wei J. and Margetis G.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196202642&doi=10.1007%2f978-3-031-60458-4_14&partnerID=40&md5=017510be06c286789867235cfd98bb36},
doi = {10.1007/978-3-031-60458-4_14},
isbn = {03029743 (ISSN); 978-303160457-7 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {14737 LNCS},
pages = {196–210},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Today’s online retailers are faced with the challenge of providing a convenient solution for their customers to browse through a wide range of products. Simultaneously, they must meet individual customer needs by creating unique, personalized, one-of-a-kind items. Technological advances in areas such as Augmented Reality (AR), Artificial Intelligence (AI) or sensors (e.g. LiDAR), have the potential to address these challenges by enhancing the customer experience in new ways. One option is to implement “phygital” commerce solutions, which combines the benefits of physical and digital environments to improve the customer journey. This work presents a concept for a mobile AR application that integrates LiDAR and an AI-powered recommender system to create a unique phygital customer journey in the context of furniture shopping. The combination of AR, LiDAR and AI enables an accurate immersive experience along with personalized product designs. This concept aims to deliver benefits in terms of usability, convenience, time savings and user experience, while bridging the gap between mass-produced and personalized products. The new possibilities for merging virtual with physical environments hold immense potential, but this work also highlights challenges for customers as well as for online platform providers and future researchers. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Artificial intelligence, Augmented Reality, Augmented reality applications, Electronic commerce, Generative AI, generative artificial intelligence, Human computer interaction, Human computer interfaces, LiDAR, Mobile augmented reality, Mobile human computer interface, Mobile Human Computer Interfaces, Personalized product design, Personalized products, Phygital customer journey, Physical environments, Product design, Recommender system, Recommender systems, Sales, User centered design, User interfaces, User-centered design},
pubstate = {published},
tppubtype = {inproceedings}
}
Na, M.; Lee, J.
Generative AI-Enabled Energy-Efficient Mobile Augmented Reality in Multi-Access Edge Computing Journal Article
In: Applied Sciences (Switzerland), vol. 14, no. 18, 2024, ISSN: 20763417 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).
Abstract | Links | BibTeX | Tags: Artificial intelligence technologies, Augmented Reality, benchmarking, Computation offloading, Edge computing, Energy Efficient, Generative adversarial networks, Generative AI, Image enhancement, Mobile augmented reality, Mobile edge computing, Multi-access edge computing, Multiaccess, Quality of Service, Resolution process, super-resolution, Superresolution, Trade off
@article{na_generative_2024,
title = {Generative AI-Enabled Energy-Efficient Mobile Augmented Reality in Multi-Access Edge Computing},
author = {M. Na and J. Lee},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205236316&doi=10.3390%2Fapp14188419&partnerID=40&md5=bb3541cad9af6e839ba08fbfc7e88c08},
doi = {10.3390/app14188419},
issn = {20763417 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Applied Sciences (Switzerland)},
volume = {14},
number = {18},
abstract = {This paper proposes a novel offloading and super-resolution (SR) control scheme for energy-efficient mobile augmented reality (MAR) in multi-access edge computing (MEC) using SR as a promising generative artificial intelligence (GAI) technology. Specifically, SR can enhance low-resolution images into high-resolution versions using GAI technologies. This capability is particularly advantageous in MAR by lowering the bitrate required for network transmission. However, this SR process requires considerable computational resources and can introduce latency, potentially overloading the MEC server if there are numerous offload requests for MAR services. In this context, we conduct an empirical study to verify that the computational latency of SR increases with the upscaling level. Therefore, we demonstrate a trade-off between computational latency and improved service satisfaction when upscaling images for object detection, as it enhances the detection accuracy. From this perspective, determining whether to apply SR for MAR, while jointly controlling offloading decisions, is challenging. Consequently, to design energy-efficient MAR, we rigorously formulate analytical models for the energy consumption of a MAR device, the overall latency and the MAR satisfaction of service quality from the enforcement of the service accuracy, taking into account the SR process at the MEC server. Finally, we develop a theoretical framework that optimizes the computation offloading and SR control problem for MAR clients by jointly optimizing the offloading and SR decisions, considering their trade-off in MAR with MEC. Finally, the performance evaluation indicates that our proposed framework effectively supports MAR services by efficiently managing offloading and SR decisions, balancing trade-offs between energy consumption, latency, and service satisfaction compared to benchmarks. © 2024 Elsevier B.V., All rights reserved.},
note = {Publisher: Multidisciplinary Digital Publishing Institute (MDPI)},
keywords = {Artificial intelligence technologies, Augmented Reality, benchmarking, Computation offloading, Edge computing, Energy Efficient, Generative adversarial networks, Generative AI, Image enhancement, Mobile augmented reality, Mobile edge computing, Multi-access edge computing, Multiaccess, Quality of Service, Resolution process, super-resolution, Superresolution, Trade off},
pubstate = {published},
tppubtype = {article}
}