AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Coronado, A.; Carvalho, S. T.; Berretta, L.
See Through My Eyes: Using Multimodal Large Language Model for Describing Rendered Environments to Blind People Proceedings Article
In: IMX - Proc. ACM Int. Conf. Interact. Media Experiences, pp. 451–457, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071391-0 (ISBN).
Abstract | Links | BibTeX | Tags: Accessibility, Behavioral Research, Blind, Blind people, Helmet mounted displays, Human engineering, Human rehabilitation equipment, Interactive computer graphics, Interactive computer systems, Language Model, LLM, Multi-modal, Rendered environment, rendered environments, Spatial cognition, Virtual Reality, Vision aids, Visual impairment, Visual languages, Visually impaired people
@inproceedings{coronado_see_2025,
title = {See Through My Eyes: Using Multimodal Large Language Model for Describing Rendered Environments to Blind People},
author = {A. Coronado and S. T. Carvalho and L. Berretta},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007991842&doi=10.1145%2f3706370.3731641&partnerID=40&md5=2f7cb1535d39d5e59b1f43f773de3272},
doi = {10.1145/3706370.3731641},
isbn = {979-840071391-0 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IMX - Proc. ACM Int. Conf. Interact. Media Experiences},
pages = {451–457},
publisher = {Association for Computing Machinery, Inc},
abstract = {Extended Reality (XR) is quickly expanding "as the next major technology wave in personal computing". Nevertheless, this expansion and adoption could also exclude certain disabled users, particularly people with visual impairment (VIP). According to the World Health Organization (WHO) in their 2019 publication, there were at least 2.2 billion people with visual impairment, a number that is also estimated to have increased in recent years. Therefore, it is important to include disabled users, especially visually impaired people, in the design of Head-Mounted Displays and Extended Reality environments. Indeed, this objective can be pursued by incorporating Multimodal Large Language Model (MLLM) technology, which can assist visually impaired people. As a case study, this study employs different prompts that result in environment descriptions from an MLLM integrated into a virtual reality (VR) escape room. Therefore, six potential prompts were engineered to generate valuable outputs for visually impaired users inside a VR environment. These outputs were evaluated using the G-Eval, and VIEScore metrics. Even though, the results show that the prompt patterns provided a description that aligns with the user's point of view, it is highly recommended to evaluate these outputs through "expected outputs"from Orientation and Mobility Specialists, and Sighted Guides. Furthermore, the subsequent step in the process is to evaluate these outputs by visually impaired people themselves to identify the most effective prompt pattern. © 2025 Copyright held by the owner/author(s).},
keywords = {Accessibility, Behavioral Research, Blind, Blind people, Helmet mounted displays, Human engineering, Human rehabilitation equipment, Interactive computer graphics, Interactive computer systems, Language Model, LLM, Multi-modal, Rendered environment, rendered environments, Spatial cognition, Virtual Reality, Vision aids, Visual impairment, Visual languages, Visually impaired people},
pubstate = {published},
tppubtype = {inproceedings}
}
Xiao, T.; Chen, Y.; Zhong, S.; Kiefer, P.; Krukar, J.; Kim, K. G.; Hurni, L.; Schwering, A.; Raubal, M.
Sketch2Terrain: AI-Driven Real-Time Terrain Sketch Mapping in Augmented Reality Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2025, ISBN: 979-840071394-1 (ISBN).
Abstract | Links | BibTeX | Tags: 3D information, Augmented Reality, Drawing (graphics), Freehand sketching, Generative 3D sketch mapping, Generative AI, Mapping systems, Photomapping, Real-time terrains, Sketch maps, Spatial cognition, Spatial informations, terrain generation, Terrain generations, Three dimensional computer graphics
@inproceedings{xiao_sketch2terrain_2025,
title = {Sketch2Terrain: AI-Driven Real-Time Terrain Sketch Mapping in Augmented Reality},
author = {T. Xiao and Y. Chen and S. Zhong and P. Kiefer and J. Krukar and K. G. Kim and L. Hurni and A. Schwering and M. Raubal},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005747437&doi=10.1145%2f3706598.3713467&partnerID=40&md5=bc38e658cfe7ae83792e8837d496f2c7},
doi = {10.1145/3706598.3713467},
isbn = {979-840071394-1 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {Sketch mapping is an effective technique to externalize and communicate spatial information. However, it has been limited to 2D mediums, making it difficult to represent 3D information, particularly for terrains with elevation changes. We present Sketch2Terrain, an intuitive generative-3D-sketch-mapping system combining freehand sketching with generative Artificial Intelligence that radically changes sketch map creation and representation using Augmented Reality. Sketch2Terrain empowers non-experts to create unambiguous sketch maps of natural environments and provides a homogeneous interface for researchers to collect data and conduct experiments. A between-subject study (N=36) revealed that generative-3D-sketch-mapping improved efficiency by 38.4%, terrain-topology accuracy by 12.5%, and landmark accuracy by up to 12.1%, with only a 4.7% trade-off in terrain-elevation accuracy compared to freehand 3D-sketch-mapping. Additionally, generative-3D-sketch-mapping reduced perceived strain by 60.5% and stress by 39.5% over 2D-sketch-mapping. These findings underscore potential applications of generative-3D-sketch-mapping for in-depth understanding and accurate representation of vertically complex environments. The implementation is publicly available. © 2025 Copyright held by the owner/author(s).},
keywords = {3D information, Augmented Reality, Drawing (graphics), Freehand sketching, Generative 3D sketch mapping, Generative AI, Mapping systems, Photomapping, Real-time terrains, Sketch maps, Spatial cognition, Spatial informations, terrain generation, Terrain generations, Three dimensional computer graphics},
pubstate = {published},
tppubtype = {inproceedings}
}