AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
Here you can find the complete list of our publications.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Boubakri, F. -E.; Kadri, M.; Kaghat, F. Z.; Azough, A.; Tairi, H.
Exploring 3D Cardiac Anatomy with Text-Based AI Guidance in Virtual Reality Proceedings Article
In: pp. 43–48, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331534899 (ISBN).
Abstract | Links | BibTeX | Tags: 3D cardiac anatomy, 3d heart models, Anatomy education, Anatomy educations, Cardiac anatomy, Collaborative environments, Collaborative learning, Computer aided instruction, Curricula, Design and Development, E-Learning, Education computing, Generative AI, Heart, Immersive environment, Learning systems, Natural language processing systems, Social virtual reality, Students, Teaching, Three dimensional computer graphics, Virtual Reality
@inproceedings{boubakri_exploring_2025,
title = {Exploring 3D Cardiac Anatomy with Text-Based AI Guidance in Virtual Reality},
author = {F. -E. Boubakri and M. Kadri and F. Z. Kaghat and A. Azough and H. Tairi},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105015676741&doi=10.1109%2FSCME62582.2025.11104869&partnerID=40&md5=c961694f97c50adc23b6826dddb265cd},
doi = {10.1109/SCME62582.2025.11104869},
isbn = {9798331534899 (ISBN)},
year = {2025},
date = {2025-01-01},
pages = {43–48},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This paper presents the design and development of a social virtual reality (VR) classroom focused on cardiac anatomy education for students in grades K-12. The application allows multiple learners to explore a detailed 3D heart model within an immersive and collaborative environment. A crucial part of the system is the integration of a text-based conversational AI interface powered by ChatGPT, which provides immediate, interactive explanations and addresses student inquiries about heart anatomy. The system supports both guided and exploratory learning modes, encourages peer collaboration, and offers personalized support through natural language dialogue. We evaluated the system's effectiveness through a comprehensive study measuring learning perception (LPQ), VR perception (VRPQ), AI perception (AIPQ), and VR-related symptoms (VRSQ). Potential applications include making high-quality cardiac anatomy education more affordable for K-12 schools with limited resources, offering an adaptable AI-based tutoring system for students to learn at their own pace, and equipping educators with an easy-to-use tool to integrate into their science curriculum with minimal additional training. © 2025 Elsevier B.V., All rights reserved.},
keywords = {3D cardiac anatomy, 3d heart models, Anatomy education, Anatomy educations, Cardiac anatomy, Collaborative environments, Collaborative learning, Computer aided instruction, Curricula, Design and Development, E-Learning, Education computing, Generative AI, Heart, Immersive environment, Learning systems, Natural language processing systems, Social virtual reality, Students, Teaching, Three dimensional computer graphics, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
This paper presents the design and development of a social virtual reality (VR) classroom focused on cardiac anatomy education for students in grades K-12. The application allows multiple learners to explore a detailed 3D heart model within an immersive and collaborative environment. A crucial part of the system is the integration of a text-based conversational AI interface powered by ChatGPT, which provides immediate, interactive explanations and addresses student inquiries about heart anatomy. The system supports both guided and exploratory learning modes, encourages peer collaboration, and offers personalized support through natural language dialogue. We evaluated the system's effectiveness through a comprehensive study measuring learning perception (LPQ), VR perception (VRPQ), AI perception (AIPQ), and VR-related symptoms (VRSQ). Potential applications include making high-quality cardiac anatomy education more affordable for K-12 schools with limited resources, offering an adaptable AI-based tutoring system for students to learn at their own pace, and equipping educators with an easy-to-use tool to integrate into their science curriculum with minimal additional training. © 2025 Elsevier B.V., All rights reserved.