AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Li, Z.; Zhang, H.; Peng, C.; Peiris, R.
Exploring Large Language Model-Driven Agents for Environment-Aware Spatial Interactions and Conversations in Virtual Reality Role-Play Scenarios Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR, pp. 1–11, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833153645-9 (ISBN).
Abstract | Links | BibTeX | Tags: Chatbots, Computer simulation languages, Context- awareness, context-awareness, Digital elevation model, Generative AI, Human-AI Interaction, Language Model, Large language model, large language models, Model agents, Role-play simulation, role-play simulations, Role-plays, Spatial interaction, Virtual environments, Virtual Reality, Virtual-reality environment
@inproceedings{li_exploring_2025,
title = {Exploring Large Language Model-Driven Agents for Environment-Aware Spatial Interactions and Conversations in Virtual Reality Role-Play Scenarios},
author = {Z. Li and H. Zhang and C. Peng and R. Peiris},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002706893&doi=10.1109%2fVR59515.2025.00025&partnerID=40&md5=60f22109e054c9035a0c2210bb797039},
doi = {10.1109/VR59515.2025.00025},
isbn = {979-833153645-9 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces, VR},
pages = {1–11},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Recent research has begun adopting Large Language Model (LLM) agents to enhance Virtual Reality (VR) interactions, creating immersive chatbot experiences. However, while current studies focus on generating dialogue from user speech inputs, their abilities to generate richer experiences based on the perception of LLM agents' VR environments and interaction cues remain unexplored. Hence, in this work, we propose an approach that enables LLM agents to perceive virtual environments and generate environment-aware interactions and conversations for an embodied human-AI interaction experience in VR environments. Here, we define a schema for describing VR environments and their interactions through text prompts. We evaluate the performance of our method through five role-play scenarios created using our approach in a study with 14 participants. The findings discuss the opportunities and challenges of our proposed approach for developing environment-aware LLM agents that facilitate spatial interactions and conversations within VR role-play scenarios. © 2025 IEEE.},
keywords = {Chatbots, Computer simulation languages, Context- awareness, context-awareness, Digital elevation model, Generative AI, Human-AI Interaction, Language Model, Large language model, large language models, Model agents, Role-play simulation, role-play simulations, Role-plays, Spatial interaction, Virtual environments, Virtual Reality, Virtual-reality environment},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Jia, Y.; Sin, Z. P. T.; Wang, X. E.; Li, C.; Ng, P. H. F.; Huang, X.; Dong, J.; Wang, Y.; Baciu, G.; Cao, J.; Li, Q.
NivTA: Towards a Naturally Interactable Edu-Metaverse Teaching Assistant for CAVE Proceedings Article
In: Proc. - IEEE Int. Conf. Metaverse Comput., Netw., Appl., MetaCom, pp. 57–64, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833151599-7 (ISBN).
Abstract | Links | BibTeX | Tags: Active learning, Adversarial machine learning, cave automatic virtual environment, Cave automatic virtual environments, Caves, Chatbots, Contrastive Learning, Digital elevation model, Federated learning, Interactive education, Language Model, Large language model agent, Learning Activity, LLM agents, Metaverses, Model agents, Natural user interface, Students, Teaching, Teaching assistants, Virtual environments, Virtual Reality, virtual teaching assistant, Virtual teaching assistants
@inproceedings{jia_nivta_2024,
title = {NivTA: Towards a Naturally Interactable Edu-Metaverse Teaching Assistant for CAVE},
author = {Y. Jia and Z. P. T. Sin and X. E. Wang and C. Li and P. H. F. Ng and X. Huang and J. Dong and Y. Wang and G. Baciu and J. Cao and Q. Li},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211447638&doi=10.1109%2fMetaCom62920.2024.00023&partnerID=40&md5=efefd453c426e74705518254bdc49e87},
doi = {10.1109/MetaCom62920.2024.00023},
isbn = {979-833151599-7 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Conf. Metaverse Comput., Netw., Appl., MetaCom},
pages = {57–64},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Edu-metaverse is a specialized metaverse dedicated for interactive education in an immersive environment. Its main purpose is to immerse the learners in a digital environment and conduct learning activities that could mirror reality. Not only does it enable activities that may be difficult to perform in the real world, but it also extends the interaction to personalized and CL. This is a more effective pedagogical approach as it tends to enhance the motivation and engagement of students and it increases their active participation in lessons delivered. To this extend, we propose to realize an interactive virtual teaching assistant called NivTA. To make NivTA easily accessible and engaging by multiple users simultaneously, we also propose to use a CAVE virtual environment (CAVE-VR) as a "metaverse window"into concepts, ideas, topics, and learning activities. The students simply need to step into the CAVE-VR and interact with a life-size teaching assistant that they can engage with naturally, as if they are approaching a real person. Instead of text-based interaction currently developed for large language models (LLM), NivTA is given additional cues regarding the users so it can react more naturally via a specific prompt design. For example, the user can simply point to an educational concept and ask NivTA to explain what it is. To guide NivTA onto the educational concept, the prompt is also designed to feed in an educational KG to provide NivTA with the context of the student's question. The NivTA system is an integration of several components that are discussed in this paper. We further describe how the system is designed and implemented, along with potential applications and future work on interactive collaborative edu-metaverse environments dedicated for teaching and learning. © 2024 IEEE.},
keywords = {Active learning, Adversarial machine learning, cave automatic virtual environment, Cave automatic virtual environments, Caves, Chatbots, Contrastive Learning, Digital elevation model, Federated learning, Interactive education, Language Model, Large language model agent, Learning Activity, LLM agents, Metaverses, Model agents, Natural user interface, Students, Teaching, Teaching assistants, Virtual environments, Virtual Reality, virtual teaching assistant, Virtual teaching assistants},
pubstate = {published},
tppubtype = {inproceedings}
}