AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Ademola, A.; Sinclair, D.; Koniaris, B.; Hannah, S.; Mitchell, K.
NeFT-Net: N-window extended frequency transformer for rhythmic motion prediction Journal Article
In: Computers and Graphics, vol. 129, 2025, ISSN: 00978493 (ISSN).
Abstract | Links | BibTeX | Tags: Cosine transforms, Discrete cosine transforms, Human motions, Immersive, machine learning, Machine-learning, Motion analysis, Motion prediction, Motion processing, Motion sequences, Motion tracking, Real-world, Rendering, Rendering (computer graphics), Rhythmic motion, Three dimensional computer graphics, Virtual environments, Virtual Reality
@article{ademola_neft-net_2025,
title = {NeFT-Net: N-window extended frequency transformer for rhythmic motion prediction},
author = {A. Ademola and D. Sinclair and B. Koniaris and S. Hannah and K. Mitchell},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105006724723&doi=10.1016%2fj.cag.2025.104244&partnerID=40&md5=08fd0792837332404ec9acdd16f608bf},
doi = {10.1016/j.cag.2025.104244},
issn = {00978493 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Computers and Graphics},
volume = {129},
abstract = {Advancements in prediction of human motion sequences are critical for enabling online virtual reality (VR) users to dance and move in ways that accurately mirror real-world actions, delivering a more immersive and connected experience. However, latency in networked motion tracking remains a significant challenge, disrupting engagement and necessitating predictive solutions to achieve real-time synchronization of remote motions. To address this issue, we propose a novel approach leveraging a synthetically generated dataset based on supervised foot anchor placement timings for rhythmic motions, ensuring periodicity and reducing prediction errors. Our model integrates a discrete cosine transform (DCT) to encode motion, refine high-frequency components, and smooth motion sequences, mitigating jittery artifacts. Additionally, we introduce a feed-forward attention mechanism designed to learn from N-window pairs of 3D key-point pose histories for precise future motion prediction. Quantitative and qualitative evaluations on the Human3.6M dataset highlight significant improvements in mean per joint position error (MPJPE) metrics, demonstrating the superiority of our technique over state-of-the-art approaches. We further introduce novel result pose visualizations through the use of generative AI methods. © 2025 The Authors},
keywords = {Cosine transforms, Discrete cosine transforms, Human motions, Immersive, machine learning, Machine-learning, Motion analysis, Motion prediction, Motion processing, Motion sequences, Motion tracking, Real-world, Rendering, Rendering (computer graphics), Rhythmic motion, Three dimensional computer graphics, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
2024
He, K.; Lapham, A.; Li, Z.
Enhancing Narratives with SayMotion's text-to-3D animation and LLMs Proceedings Article
In: S.N., Spencer (Ed.): Proc. - SIGGRAPH Real-Time Live!, Association for Computing Machinery, Inc, 2024, ISBN: 979-840070526-7 (ISBN).
Abstract | Links | BibTeX | Tags: 3D animation, AI-based animation, Animation, Animation editing, Deep learning, Film production, Human motions, Interactive computer graphics, Interactive media, Language Model, Motion models, Physics simulation, Production medium, Simulation platform, Three dimensional computer graphics
@inproceedings{he_enhancing_2024,
title = {Enhancing Narratives with SayMotion's text-to-3D animation and LLMs},
author = {K. He and A. Lapham and Z. Li},
editor = {Spencer S.N.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200655076&doi=10.1145%2f3641520.3665309&partnerID=40&md5=458f935043e3372e633ed5fc13bf6cd7},
doi = {10.1145/3641520.3665309},
isbn = {979-840070526-7 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - SIGGRAPH Real-Time Live!},
publisher = {Association for Computing Machinery, Inc},
abstract = {SayMotion, a generative AI text-to-3D animation platform, utilizes deep generative learning and advanced physics simulation to transform text descriptions into realistic 3D human motions for applications in gaming, extended reality (XR), film production, education and interactive media. SayMotion addresses challenges due to the complexities of animation creation by employing a Large Language Model (LLM) fine-tuned to human motion with further AI-based animation editing components including spatial-temporal Inpainting via a proprietary Large Motion Model (LMM). SayMotion is a pioneer in the animation market by offering a comprehensive set of AI generation and AI editing functions for creating 3D animations efficiently and intuitively. With an LMM at its core, SayMotion aims to democratize 3D animations for everyone through language and generative motion. © 2024 Owner/Author.},
keywords = {3D animation, AI-based animation, Animation, Animation editing, Deep learning, Film production, Human motions, Interactive computer graphics, Interactive media, Language Model, Motion models, Physics simulation, Production medium, Simulation platform, Three dimensional computer graphics},
pubstate = {published},
tppubtype = {inproceedings}
}