AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Espinal, W. Y. Arevalo; Jimenez, J.; Corneo, L.
An eXtended Reality Data Transformation Framework for Internet of Things Devices Integration Proceedings Article
In: IoT - Proc. Int. Conf. Internet Things, pp. 10–18, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071285-2 (ISBN).
Abstract | Links | BibTeX | Tags: Application programs, Comprehensive evaluation, Data integration, Data Transformation, Device and Data Integration, Devices integration, Extended reality, Generative AI, Interactive objects, Internet of Things, Language Model, Software runtime, Time-consuming tasks
@inproceedings{arevalo_espinal_extended_2025,
title = {An eXtended Reality Data Transformation Framework for Internet of Things Devices Integration},
author = {W. Y. Arevalo Espinal and J. Jimenez and L. Corneo},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002862430&doi=10.1145%2f3703790.3703792&partnerID=40&md5=6ba7d70e00e3b0803149854b5744e55e},
doi = {10.1145/3703790.3703792},
isbn = {979-840071285-2 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IoT - Proc. Int. Conf. Internet Things},
pages = {10–18},
publisher = {Association for Computing Machinery, Inc},
abstract = {The multidisciplinary nature of XR applications makes device and data integration a resource-intensive and time-consuming task, especially in the context of the Internet of Things (IoT). This paper presents Visualize Interactive Objects, VIO for short, a data transformation framework aimed at simplifying visualization and interaction of IoT devices and their data into XR applications. VIO comprises a software runtime (VRT) running on XR headsets, and a JSON-based syntax for defining VIO Descriptions (VDs). The VRT interprets VDs to facilitate visualization and interaction within the application. By raising the level of abstraction, VIO enhances interoperability among XR experiences and enables developers to integrate IoT data with minimal coding effort. A comprehensive evaluation demonstrated that VIO is lightweight, incurring in negligible overhead compared to native implementations. Ten Large Language Models (LLM) were used to generate VDs and native source-code from user intents. The results showed that LLMs have superior syntactical and semantical accuracy in generating VDs compared to native XR application development code, thus indicating that the task of creating VDs can be effectively automated using LLMs. Additionally, a user study with 12 participants found that VIO is developer-friendly and easily extensible. © 2024 Copyright held by the owner/author(s).},
keywords = {Application programs, Comprehensive evaluation, Data integration, Data Transformation, Device and Data Integration, Devices integration, Extended reality, Generative AI, Interactive objects, Internet of Things, Language Model, Software runtime, Time-consuming tasks},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Joseph, S.; Priya, B. S.; Poorvaja, R.; Kumaran, M. Santhosh; Shivaraj, S.; Jeyanth, V.; Shivesh, R. P.
IoT Empowered AI: Transforming Object Recognition and NLP Summarization with Generative AI Proceedings Article
In: K.V., Arya; T., Wada (Ed.): Proc. IEEE Int. Conf. Comput. Vis. Mach. Intell., CVMI, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 979-835030514-2 (ISBN).
Abstract | Links | BibTeX | Tags: 2D, 3D, Application program interface, Application Program Interface (API), Application program interfaces, Application programming interfaces (API), Application programs, Augmented Reality, Augmented Reality(AR), Automation, Cameras, Cost effectiveness, Domestic appliances, GenAl, Internet of Things, Internet of Things (IoT) technologies, Internet of things technologies, Language processing, Natural Language Processing, Natural language processing systems, Natural languages, Object Detection, Object recognition, Objects detection, Optical character recognition, Optical Character Recognition (OCR), Smartphones
@inproceedings{joseph_iot_2023,
title = {IoT Empowered AI: Transforming Object Recognition and NLP Summarization with Generative AI},
author = {S. Joseph and B. S. Priya and R. Poorvaja and M. Santhosh Kumaran and S. Shivaraj and V. Jeyanth and R. P. Shivesh},
editor = {Arya K.V. and Wada T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189754688&doi=10.1109%2fCVMI59935.2023.10465077&partnerID=40&md5=9c1a9d7151c0b04bab83586f515d30aa},
doi = {10.1109/CVMI59935.2023.10465077},
isbn = {979-835030514-2 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Proc. IEEE Int. Conf. Comput. Vis. Mach. Intell., CVMI},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In anticipation of the widespread adoption of augmented reality in the future, this paper introduces an advanced mobile application that seamlessly integrates AR and IoT technologies. The application aims to make these cutting-edge technologies more affordable and accessible to users while highlighting their immense benefits in assisting with household appliance control, as well as providing interactive and educational experiences. The app employs advanced algorithms such as object detection, Natural Language Processing (NLP), and Optical Character Recognition (OCR) to scan the smartphone's camera feed. Upon identification, AR controls for appliances, their power consumption, and electric bill tracking are displayed. Additionally, the application makes use of APIs to access the internet, retrieving relevant 3D generative models, 360-degree videos, 2D images, and textual information based on user interactions with detected objects. Users can effortlessly explore and interact with the 3D generative models using intuitive hand gestures, providing an immersive experience without the need for additional hardware or dedicated VR headsets. Beyond home automation, the app offers valuable educational benefits, serving as a unique learning tool for students to gain hands-on experience. Medical practitioners can quickly reference organ anatomy and utilize its feature-rich functionalities. Its cost-effectiveness, requiring only installation, ensures accessibility to a wide audience. The app's functionality is both intuitive and efficient, detecting objects in the camera feed and prompting user interactions. Users can select objects through simple hand gestures, choosing desired content like 3D generative models, 2D images, textual information, 360-degree videos, or shopping-related details. The app then retrieves and overlays the requested information onto the real-world view in AR. In conclusion, this groundbreaking AR and IoT -powered app revolutionizes home automation and learning experiences, leveraging only a smartphone's camera, without the need for additional hardware or expensive installations. Its potential applications extend to education, industries, and health care, making it a versatile and valuable tool for a broad range of users. © 2023 IEEE.},
keywords = {2D, 3D, Application program interface, Application Program Interface (API), Application program interfaces, Application programming interfaces (API), Application programs, Augmented Reality, Augmented Reality(AR), Automation, Cameras, Cost effectiveness, Domestic appliances, GenAl, Internet of Things, Internet of Things (IoT) technologies, Internet of things technologies, Language processing, Natural Language Processing, Natural language processing systems, Natural languages, Object Detection, Object recognition, Objects detection, Optical character recognition, Optical Character Recognition (OCR), Smartphones},
pubstate = {published},
tppubtype = {inproceedings}
}
2010
Scianna, Andrea
Experimental studies for the definition of 3D geospatial web services Proceedings Article
In: S., Dragicevic S. Veenendaal B. Li (Ed.): International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing, 2010, (Issue: 4W13).
Abstract | Links | BibTeX | Tags: Application programs, Computer software, Cooperative Management, Distributed database systems, Geo-spatial, Geo-Spatial Informations, Geographic data model, Geographic information, Geographic information systems, Geographical Information Systems, Geospatial web services, HTTP, Internet, Interoperability, Java programming language, Open source software, Open systems, Project management, Query processing, Social networking (online), Standard definitions, Three dimensional computer graphics, Web, Web services, Websites, World Wide Web
@inproceedings{scianna_experimental_2010,
title = {Experimental studies for the definition of 3D geospatial web services},
author = {Andrea Scianna},
editor = {Dragicevic S. Veenendaal B. Li S.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923930269&partnerID=40&md5=eb36183ca2f0842ee0fd1a0164dc4cb0},
year = {2010},
date = {2010-01-01},
booktitle = {International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives},
volume = {38},
publisher = {International Society for Photogrammetry and Remote Sensing},
abstract = {The importance of geospatial information delivery, across Internet, is increasing more and more. But if in the last years was satisfying to get 2D geographic information, from Internet browsers, extracted by http servers supported by map servers, today users would acquire 3D information especially in some case or sectors as that of building cadastral applications or civil protection. In this case availability of 3D information could be very valuable. But behind this need there exist many important aspects that today are only partially resolved as the definition of 3D geospatial web services that are connected and are dependent on some other aspects (i.e. the standardization of 3D geographic data models). The experimentation carried out deals with these issues, trying to define a 3D web service in order to visualize and query by Internt Browser 3D model of the built environment. Actually there are few 3D data models (such as CityGML) whose standard definition process is not complete. Besides these models are built with main requirement of 3D visualization even if at different level of detail. But some sectors require a better use of geographic 3D information such as querying at different level of detail (such as at a level regarding the different building parts defined through their attributes) and 3D processing. Based on a project named "Interoperability and cooperative management of geographic, dynamic, multidimensional and distributed data with Free and Open Source GIS: Management and use of distributed 3D data by open source Web-GIS software" funded by Italian Ministry of Instruction, University and Research as Program of Relevant National Interest (PRIN 2007), it is here illustrated a part of a process, that start from the construction of a Java plugin that initially consist in reading information directly from a relational database management server with spatial extension, and ends with the construction of an application server which is based the extraction of GML 3D data, all based on the existence of a 3D geospatial web service whose definition is one the last and main goal of the research. © 2010 ISPRS Archives.},
note = {Issue: 4W13},
keywords = {Application programs, Computer software, Cooperative Management, Distributed database systems, Geo-spatial, Geo-Spatial Informations, Geographic data model, Geographic information, Geographic information systems, Geographical Information Systems, Geospatial web services, HTTP, Internet, Interoperability, Java programming language, Open source software, Open systems, Project management, Query processing, Social networking (online), Standard definitions, Three dimensional computer graphics, Web, Web services, Websites, World Wide Web},
pubstate = {published},
tppubtype = {inproceedings}
}