AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2023
Bottega, J. A.; Kich, V. A.; Jesus, J. C.; Steinmetz, R.; Kolling, A. H.; Grando, R. B.; Guerra, R. S.; Gamarra, D. F. T.
Jubileo: An Immersive Simulation Framework for Social Robot Design Journal Article
In: Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 109, no. 4, 2023, ISSN: 09210296 (ISSN).
Abstract | Links | BibTeX | Tags: Anthropomorphic Robots, Computational Linguistics, Cost effectiveness, E-Learning, English language learning, English languages, Human Robot Interaction, Human-robot interaction, Humanoid robot, Humans-robot interactions, Immersive, Language learning, Language Model, Large language model, large language models, Learning game, Machine design, Man machine systems, Open systems, Robot Operating System, Simulation framework, Simulation platform, Virtual Reality
@article{bottega_jubileo_2023,
title = {Jubileo: An Immersive Simulation Framework for Social Robot Design},
author = {J. A. Bottega and V. A. Kich and J. C. Jesus and R. Steinmetz and A. H. Kolling and R. B. Grando and R. S. Guerra and D. F. T. Gamarra},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178895874&doi=10.1007%2fs10846-023-01991-3&partnerID=40&md5=6392af1e9a500ef51c3e215bd9709ce5},
doi = {10.1007/s10846-023-01991-3},
issn = {09210296 (ISSN)},
year = {2023},
date = {2023-01-01},
journal = {Journal of Intelligent and Robotic Systems: Theory and Applications},
volume = {109},
number = {4},
abstract = {This paper introduces Jubileo, an open-source simulated humanoid robot as a framework for the development of human-robot interaction applications. By leveraging the power of the Robot Operating System (ROS) and Unity in a virtual reality environment, this simulation establishes a strong connection to real robotics, faithfully replicating the robot’s physical components down to its motors and enabling communication with servo-actuators to control both the animatronic face and the joints of a real humanoid robot. To validate the capabilities of the framework, we propose English teaching games that integrate Virtual Reality (VR), game-based Human-Robot Interaction (HRI), and advanced large language models such as Generative Pre-trained Transformer (GPT). These games aim to foster linguistic competence within dynamic and interactive virtual environments. The incorporation of large language models bolsters the robot’s capability to generate human-like responses, thus facilitating a more realistic conversational experience. Moreover, the simulation framework reduces real-world testing risks and offers a cost-effective, efficient, and scalable platform for developing new HRI applications. The paper underscores the transformative potential of converging VR, large language models, and HRI, particularly in educational applications. © 2023, The Author(s), under exclusive licence to Springer Nature B.V.},
keywords = {Anthropomorphic Robots, Computational Linguistics, Cost effectiveness, E-Learning, English language learning, English languages, Human Robot Interaction, Human-robot interaction, Humanoid robot, Humans-robot interactions, Immersive, Language learning, Language Model, Large language model, large language models, Learning game, Machine design, Man machine systems, Open systems, Robot Operating System, Simulation framework, Simulation platform, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Joseph, S.; Priya, B. S.; Poorvaja, R.; Kumaran, M. Santhosh; Shivaraj, S.; Jeyanth, V.; Shivesh, R. P.
IoT Empowered AI: Transforming Object Recognition and NLP Summarization with Generative AI Proceedings Article
In: K.V., Arya; T., Wada (Ed.): Proc. IEEE Int. Conf. Comput. Vis. Mach. Intell., CVMI, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 979-835030514-2 (ISBN).
Abstract | Links | BibTeX | Tags: 2D, 3D, Application program interface, Application Program Interface (API), Application program interfaces, Application programming interfaces (API), Application programs, Augmented Reality, Augmented Reality(AR), Automation, Cameras, Cost effectiveness, Domestic appliances, GenAl, Internet of Things, Internet of Things (IoT) technologies, Internet of things technologies, Language processing, Natural Language Processing, Natural language processing systems, Natural languages, Object Detection, Object recognition, Objects detection, Optical character recognition, Optical Character Recognition (OCR), Smartphones
@inproceedings{joseph_iot_2023,
title = {IoT Empowered AI: Transforming Object Recognition and NLP Summarization with Generative AI},
author = {S. Joseph and B. S. Priya and R. Poorvaja and M. Santhosh Kumaran and S. Shivaraj and V. Jeyanth and R. P. Shivesh},
editor = {Arya K.V. and Wada T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189754688&doi=10.1109%2fCVMI59935.2023.10465077&partnerID=40&md5=9c1a9d7151c0b04bab83586f515d30aa},
doi = {10.1109/CVMI59935.2023.10465077},
isbn = {979-835030514-2 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Proc. IEEE Int. Conf. Comput. Vis. Mach. Intell., CVMI},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In anticipation of the widespread adoption of augmented reality in the future, this paper introduces an advanced mobile application that seamlessly integrates AR and IoT technologies. The application aims to make these cutting-edge technologies more affordable and accessible to users while highlighting their immense benefits in assisting with household appliance control, as well as providing interactive and educational experiences. The app employs advanced algorithms such as object detection, Natural Language Processing (NLP), and Optical Character Recognition (OCR) to scan the smartphone's camera feed. Upon identification, AR controls for appliances, their power consumption, and electric bill tracking are displayed. Additionally, the application makes use of APIs to access the internet, retrieving relevant 3D generative models, 360-degree videos, 2D images, and textual information based on user interactions with detected objects. Users can effortlessly explore and interact with the 3D generative models using intuitive hand gestures, providing an immersive experience without the need for additional hardware or dedicated VR headsets. Beyond home automation, the app offers valuable educational benefits, serving as a unique learning tool for students to gain hands-on experience. Medical practitioners can quickly reference organ anatomy and utilize its feature-rich functionalities. Its cost-effectiveness, requiring only installation, ensures accessibility to a wide audience. The app's functionality is both intuitive and efficient, detecting objects in the camera feed and prompting user interactions. Users can select objects through simple hand gestures, choosing desired content like 3D generative models, 2D images, textual information, 360-degree videos, or shopping-related details. The app then retrieves and overlays the requested information onto the real-world view in AR. In conclusion, this groundbreaking AR and IoT -powered app revolutionizes home automation and learning experiences, leveraging only a smartphone's camera, without the need for additional hardware or expensive installations. Its potential applications extend to education, industries, and health care, making it a versatile and valuable tool for a broad range of users. © 2023 IEEE.},
keywords = {2D, 3D, Application program interface, Application Program Interface (API), Application program interfaces, Application programming interfaces (API), Application programs, Augmented Reality, Augmented Reality(AR), Automation, Cameras, Cost effectiveness, Domestic appliances, GenAl, Internet of Things, Internet of Things (IoT) technologies, Internet of things technologies, Language processing, Natural Language Processing, Natural language processing systems, Natural languages, Object Detection, Object recognition, Objects detection, Optical character recognition, Optical Character Recognition (OCR), Smartphones},
pubstate = {published},
tppubtype = {inproceedings}
}