AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Aloudat, M. Z.; Aboumadi, A.; Soliman, A.; Al-Mohammed, H. A.; Al-Ali, M.; Mahgoub, A.; Barhamgi, M.; Yaacoub, E.
Metaverse Unbound: A Survey on Synergistic Integration Between Semantic Communication, 6G, and Edge Learning Journal Article
In: IEEE Access, vol. 13, pp. 58302–58350, 2025, ISSN: 21693536 (ISSN).
Abstract | Links | BibTeX | Tags: 6g wireless system, 6G wireless systems, Augmented Reality, Block-chain, Blockchain, Blockchain technology, Digital Twin Technology, Edge learning, Extended reality (XR), Language Model, Large language model, large language models (LLMs), Metaverse, Metaverses, Semantic communication, Virtual environments, Wireless systems
@article{aloudat_metaverse_2025,
title = {Metaverse Unbound: A Survey on Synergistic Integration Between Semantic Communication, 6G, and Edge Learning},
author = {M. Z. Aloudat and A. Aboumadi and A. Soliman and H. A. Al-Mohammed and M. Al-Ali and A. Mahgoub and M. Barhamgi and E. Yaacoub},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003088610&doi=10.1109%2fACCESS.2025.3555753&partnerID=40&md5=8f3f9421ce2d6be57f8154a122ee192c},
doi = {10.1109/ACCESS.2025.3555753},
issn = {21693536 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Access},
volume = {13},
pages = {58302–58350},
abstract = {With a focus on edge learning, blockchain, sixth generation (6G) wireless systems, semantic communication, and large language models (LLMs), this survey paper examines the revolutionary integration of cutting-edge technologies within the metaverse. This thorough examination highlights the critical role these technologies play in improving realism and user engagement on three main levels: technical, virtual, and physical. While the virtual layer focuses on building immersive experiences, the physical layer highlights improvements to the user interface through augmented reality (AR) goggles and virtual reality (VR) headsets. Blockchain-powered technical layer enables safe, decentralized communication. The survey highlights how the metaverse has the potential to drastically change how people interact in society by exploring applications in a variety of fields, such as immersive education, remote work, and entertainment. Concerns about privacy, scalability, and interoperability are raised, highlighting the necessity of continued study to realize the full potential of the metaverse. For scholars looking to broaden the reach and significance of the metaverse in the digital age, this paper is a useful tool. © 2013 IEEE.},
keywords = {6g wireless system, 6G wireless systems, Augmented Reality, Block-chain, Blockchain, Blockchain technology, Digital Twin Technology, Edge learning, Extended reality (XR), Language Model, Large language model, large language models (LLMs), Metaverse, Metaverses, Semantic communication, Virtual environments, Wireless systems},
pubstate = {published},
tppubtype = {article}
}
2024
Du, B.; Du, H.; Liu, H.; Niyato, D.; Xin, P.; Yu, J.; Qi, M.; Tang, Y.
YOLO-Based Semantic Communication with Generative AI-Aided Resource Allocation for Digital Twins Construction Journal Article
In: IEEE Internet of Things Journal, vol. 11, no. 5, pp. 7664–7678, 2024, ISSN: 23274662 (ISSN).
Abstract | Links | BibTeX | Tags: Cost reduction, Data transfer, Digital Twins, Edge detection, Image edge detection, Network layers, Object Detection, Object detectors, Objects detection, Physical world, Resource allocation, Resource management, Resources allocation, Semantic communication, Semantics, Semantics Information, Virtual Reality, Virtual worlds, Wireless communications
@article{du_yolo-based_2024,
title = {YOLO-Based Semantic Communication with Generative AI-Aided Resource Allocation for Digital Twins Construction},
author = {B. Du and H. Du and H. Liu and D. Niyato and P. Xin and J. Yu and M. Qi and Y. Tang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173060990&doi=10.1109%2fJIOT.2023.3317629&partnerID=40&md5=60507e2f6ce2b1c345248867a9c527a1},
doi = {10.1109/JIOT.2023.3317629},
issn = {23274662 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {IEEE Internet of Things Journal},
volume = {11},
number = {5},
pages = {7664–7678},
abstract = {Digital Twins play a crucial role in bridging the physical and virtual worlds. Given the dynamic and evolving characteristics of the physical world, a huge volume of data transmission and exchange is necessary to attain synchronized updates in the virtual world. In this article, we propose a semantic communication framework based on you only look once (YOLO) to construct a virtual apple orchard with the aim of mitigating the costs associated with data transmission. Specifically, we first employ the YOLOv7-X object detector to extract semantic information from captured images of edge devices, thereby reducing the volume of transmitted data and saving transmission costs. Afterwards, we quantify the importance of each semantic information by the confidence generated through the object detector. Based on this, we propose two resource allocation schemes, i.e., the confidence-based scheme and the acrlong AI-generated scheme, aimed at enhancing the transmission quality of important semantic information. The proposed diffusion model generates an optimal allocation scheme that outperforms both the average allocation scheme and the confidence-based allocation scheme. Moreover, to obtain semantic information more effectively, we enhance the detection capability of the YOLOv7-X object detector by introducing new efficient layer aggregation network-horNet (ELAN-H) and SimAM attention modules, while reducing the model parameters and computational complexity, making it easier to run on edge devices with limited performance. The numerical results indicate that our proposed semantic communication framework and resource allocation schemes significantly reduce transmission costs while enhancing the transmission quality of important information in communication services. © 2014 IEEE.},
keywords = {Cost reduction, Data transfer, Digital Twins, Edge detection, Image edge detection, Network layers, Object Detection, Object detectors, Objects detection, Physical world, Resource allocation, Resource management, Resources allocation, Semantic communication, Semantics, Semantics Information, Virtual Reality, Virtual worlds, Wireless communications},
pubstate = {published},
tppubtype = {article}
}
Lin, Y.; Gao, Z.; Du, H.; Niyato, D.; Kang, J.; Xiong, Z.; Zheng, Z.
Blockchain-Based Efficient and Trustworthy AIGC Services in Metaverse Journal Article
In: IEEE Transactions on Services Computing, vol. 17, no. 5, pp. 2067–2079, 2024, ISSN: 19391374 (ISSN).
Abstract | Links | BibTeX | Tags: AI-generated content, Block-chain, Blockchain, Computational modelling, Content services, Data Mining, Digital contents, Information Management, Metaverse, Metaverses, Resource management, Semantic communication, Semantics, Virtual Reality
@article{lin_blockchain-based_2024,
title = {Blockchain-Based Efficient and Trustworthy AIGC Services in Metaverse},
author = {Y. Lin and Z. Gao and H. Du and D. Niyato and J. Kang and Z. Xiong and Z. Zheng},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189177655&doi=10.1109%2fTSC.2024.3382958&partnerID=40&md5=5e3e80fbc88a49293b892acd762af3e9},
doi = {10.1109/TSC.2024.3382958},
issn = {19391374 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {IEEE Transactions on Services Computing},
volume = {17},
number = {5},
pages = {2067–2079},
abstract = {AI-Generated Content (AIGC) services are essential in developing the Metaverse, providing various digital content to build shared virtual environments. The services can also offer personalized content with user assistance, making the Metaverse more human-centric. However, user-assisted content creation requires significant communication resources to exchange data and construct trust among unknown Metaverse participants, which challenges the traditional centralized communication paradigm. To address the above challenge, we integrate blockchain with semantic communication to establish decentralized trust among participants, reducing communication overhead and improving trustworthiness for AIGC services in Metaverse. To solve the out-of-distribution issue in data provided by users, we utilize the invariant risk minimization method to extract invariant semantic information across multiple virtual environments. To guarantee trustworthiness of digital contents, we also design a smart contract-based verification mechanism to prevent random outcomes of AIGC services. We utilize semantic information and quality of digital contents provided by the above mechanisms as metrics to develop a Stackelberg game-based content caching mechanism, which can maximize the profits of Metaverse participants. Simulation results show that the proposed semantic extraction and caching mechanism can improve accuracy by almost 15% and utility by 30% compared to other mechanisms. © 2008-2012 IEEE.},
keywords = {AI-generated content, Block-chain, Blockchain, Computational modelling, Content services, Data Mining, Digital contents, Information Management, Metaverse, Metaverses, Resource management, Semantic communication, Semantics, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Chen, M.; Liu, M.; Wang, C.; Song, X.; Zhang, Z.; Xie, Y.; Wang, L.
Cross-Modal Graph Semantic Communication Assisted by Generative AI in the Metaverse for 6G Journal Article
In: Research, vol. 7, 2024, ISSN: 20965168 (ISSN).
Abstract | Links | BibTeX | Tags: 3-dimensional, 3Dimensional models, Cross-modal, Graph neural networks, Graph semantics, Metaverses, Multi-modal data, Point-clouds, Semantic communication, Semantic features, Semantics, Three dimensional computer graphics, Virtual scenario
@article{chen_cross-modal_2024,
title = {Cross-Modal Graph Semantic Communication Assisted by Generative AI in the Metaverse for 6G},
author = {M. Chen and M. Liu and C. Wang and X. Song and Z. Zhang and Y. Xie and L. Wang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192245049&doi=10.34133%2fresearch.0342&partnerID=40&md5=4a1c3e0a3ac877fcdf04937a96da32a1},
doi = {10.34133/research.0342},
issn = {20965168 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Research},
volume = {7},
abstract = {Recently, the development of the Metaverse has become a frontier spotlight, which is an important demonstration of the integration innovation of advanced technologies in the Internet. Moreover, artificial intelligence (AI) and 6G communications will be widely used in our daily lives. However, the effective interactions with the representations of multimodal data among users via 6G communications is the main challenge in the Metaverse. In this work, we introduce an intelligent cross-modal graph semantic communication approach based on generative AI and 3-dimensional (3D) point clouds to improve the diversity of multimodal representations in the Metaverse. Using a graph neural network, multimodal data can be recorded by key semantic features related to the real scenarios. Then, we compress the semantic features using a graph transformer encoder at the transmitter, which can extract the semantic representations through the cross-modal attention mechanisms. Next, we leverage a graph semantic validation mechanism to guarantee the exactness of the overall data at the receiver. Furthermore, we adopt generative AI to regenerate multimodal data in virtual scenarios. Simultaneously, a novel 3D generative reconstruction network is constructed from the 3D point clouds, which can transfer the data from images to 3D models, and we infer the multimodal data into the 3D models to increase realism in virtual scenarios. Finally, the experiment results demonstrate that cross-modal graph semantic communication, assisted by generative AI, has substantial potential for enhancing user interactions in the 6G communications and Metaverse. Copyright © 2024 Mingkai Chen et al.},
keywords = {3-dimensional, 3Dimensional models, Cross-modal, Graph neural networks, Graph semantics, Metaverses, Multi-modal data, Point-clouds, Semantic communication, Semantic features, Semantics, Three dimensional computer graphics, Virtual scenario},
pubstate = {published},
tppubtype = {article}
}
2023
Park, J.; Choi, J.; Kim, S. -L.; Bennis, M.
Enabling the Wireless Metaverse via Semantic Multiverse Communication Proceedings Article
In: Annu. IEEE Commun.Soc. Conf. Sens., Mesh Ad Hoc Commun. Netw. workshops, pp. 85–90, IEEE Computer Society, 2023, ISBN: 21555486 (ISSN); 979-835030052-9 (ISBN).
Abstract | Links | BibTeX | Tags: Deep learning, Extended reality (XR), Federated learning, Fertilizers, Learn+, Learning systems, Metaverse, Metaverses, Modal analysis, Multi agent systems, Multi-agent reinforcement learning, Multi-modal data, Reinforcement Learning, Semantic communication, Semantics, Signal encoding, Signaling game, Split learning, Symbolic artificial intelligence
@inproceedings{park_enabling_2023,
title = {Enabling the Wireless Metaverse via Semantic Multiverse Communication},
author = {J. Park and J. Choi and S. -L. Kim and M. Bennis},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177465286&doi=10.1109%2fSECON58729.2023.10287438&partnerID=40&md5=b052572fb2f78ce0694c7ae5726c8daf},
doi = {10.1109/SECON58729.2023.10287438},
isbn = {21555486 (ISSN); 979-835030052-9 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Annu. IEEE Commun.Soc. Conf. Sens., Mesh Ad Hoc Commun. Netw. workshops},
volume = {2023-September},
pages = {85–90},
publisher = {IEEE Computer Society},
abstract = {Metaverse over wireless networks is an emerging use case of the sixth generation (6G) wireless systems, posing unprecedented challenges in terms of its multi-modal data transmissions with stringent latency and reliability requirements. Towards enabling this wireless metaverse, in this article we propose a novel semantic communication (SC) framework by decomposing the metaverse into human/machine agent-specific semantic multiverses (SMs). An SM stored at each agent comprises a semantic encoder and a generator, leveraging recent advances in generative artificial intelligence (AI). To improve communication efficiency, the encoder learns the semantic representations (SRs) of multi-modal data, while the generator learns how to manipulate them for locally rendering scenes and interactions in the metaverse. Since these learned SMs are biased towards local environments, their success hinges on synchronizing heterogeneous SMs in the background while communicating SRs in the foreground, turning the wireless metaverse problem into the problem of semantic multiverse communication (SMC). Based on this SMC architecture, we propose several promising algorithmic and analytic tools for modeling and designing SMC, ranging from distributed learning and multi-agent reinforcement learning (MARL) to signaling games and symbolic AI. © 2023 IEEE.},
keywords = {Deep learning, Extended reality (XR), Federated learning, Fertilizers, Learn+, Learning systems, Metaverse, Metaverses, Modal analysis, Multi agent systems, Multi-agent reinforcement learning, Multi-modal data, Reinforcement Learning, Semantic communication, Semantics, Signal encoding, Signaling game, Split learning, Symbolic artificial intelligence},
pubstate = {published},
tppubtype = {inproceedings}
}