AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Du, B.; Du, H.; Liu, H.; Niyato, D.; Xin, P.; Yu, J.; Qi, M.; Tang, Y.
YOLO-Based Semantic Communication with Generative AI-Aided Resource Allocation for Digital Twins Construction Journal Article
In: IEEE Internet of Things Journal, vol. 11, no. 5, pp. 7664–7678, 2024, ISSN: 23274662 (ISSN).
Abstract | Links | BibTeX | Tags: Cost reduction, Data transfer, Digital Twins, Edge detection, Image edge detection, Network layers, Object Detection, Object detectors, Objects detection, Physical world, Resource allocation, Resource management, Resources allocation, Semantic communication, Semantics, Semantics Information, Virtual Reality, Virtual worlds, Wireless communications
@article{du_yolo-based_2024,
title = {YOLO-Based Semantic Communication with Generative AI-Aided Resource Allocation for Digital Twins Construction},
author = {B. Du and H. Du and H. Liu and D. Niyato and P. Xin and J. Yu and M. Qi and Y. Tang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173060990&doi=10.1109%2fJIOT.2023.3317629&partnerID=40&md5=60507e2f6ce2b1c345248867a9c527a1},
doi = {10.1109/JIOT.2023.3317629},
issn = {23274662 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {IEEE Internet of Things Journal},
volume = {11},
number = {5},
pages = {7664–7678},
abstract = {Digital Twins play a crucial role in bridging the physical and virtual worlds. Given the dynamic and evolving characteristics of the physical world, a huge volume of data transmission and exchange is necessary to attain synchronized updates in the virtual world. In this article, we propose a semantic communication framework based on you only look once (YOLO) to construct a virtual apple orchard with the aim of mitigating the costs associated with data transmission. Specifically, we first employ the YOLOv7-X object detector to extract semantic information from captured images of edge devices, thereby reducing the volume of transmitted data and saving transmission costs. Afterwards, we quantify the importance of each semantic information by the confidence generated through the object detector. Based on this, we propose two resource allocation schemes, i.e., the confidence-based scheme and the acrlong AI-generated scheme, aimed at enhancing the transmission quality of important semantic information. The proposed diffusion model generates an optimal allocation scheme that outperforms both the average allocation scheme and the confidence-based allocation scheme. Moreover, to obtain semantic information more effectively, we enhance the detection capability of the YOLOv7-X object detector by introducing new efficient layer aggregation network-horNet (ELAN-H) and SimAM attention modules, while reducing the model parameters and computational complexity, making it easier to run on edge devices with limited performance. The numerical results indicate that our proposed semantic communication framework and resource allocation schemes significantly reduce transmission costs while enhancing the transmission quality of important information in communication services. © 2014 IEEE.},
keywords = {Cost reduction, Data transfer, Digital Twins, Edge detection, Image edge detection, Network layers, Object Detection, Object detectors, Objects detection, Physical world, Resource allocation, Resource management, Resources allocation, Semantic communication, Semantics, Semantics Information, Virtual Reality, Virtual worlds, Wireless communications},
pubstate = {published},
tppubtype = {article}
}
Tang, Y.; Situ, J.; Huang, Y.
Beyond User Experience: Technical and Contextual Metrics for Large Language Models in Extended Reality Proceedings Article
In: UbiComp Companion - Companion ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., pp. 640–643, Association for Computing Machinery, Inc, 2024, ISBN: 979-840071058-2 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Computer simulation languages, Evaluation Metrics, Extended reality, Language Model, Large language model, large language models, Mixed reality, Modeling performance, Natural language processing systems, Physical world, Spatial computing, spatial data, user experience, Users' experiences, Virtual environments, Virtual Reality
@inproceedings{tang_beyond_2024,
title = {Beyond User Experience: Technical and Contextual Metrics for Large Language Models in Extended Reality},
author = {Y. Tang and J. Situ and Y. Huang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206203437&doi=10.1145%2f3675094.3678995&partnerID=40&md5=3fb337872b483a163bfbea038f1baffe},
doi = {10.1145/3675094.3678995},
isbn = {979-840071058-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {UbiComp Companion - Companion ACM Int. Jt. Conf. Pervasive Ubiquitous Comput.},
pages = {640–643},
publisher = {Association for Computing Machinery, Inc},
abstract = {Spatial Computing involves interacting with the physical world through spatial data manipulation, closely linked with Extended Reality (XR), which includes Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). Large Language Models (LLMs) significantly enhance XR applications by improving user interactions through natural language understanding and content generation. Typical evaluations of these applications focus on user experience (UX) metrics, such as task performance, user satisfaction, and psychological assessments, but often neglect the technical performance of the LLMs themselves. This paper identifies significant gaps in current evaluation practices for LLMs within XR environments, attributing them to the novelty of the field, the complexity of spatial contexts, and the multimodal nature of interactions in XR. To address these gaps, the paper proposes specific metrics tailored to evaluate LLM performance in XR contexts, including spatial contextual awareness, coherence, proactivity, multimodal integration, hallucination, and question-answering accuracy. These proposed metrics aim to complement existing UX evaluations, providing a comprehensive assessment framework that captures both the technical and user-centric aspects of LLM performance in XR applications. The conclusion underscores the necessity for a dual-focused approach that combines technical and UX metrics to ensure effective and user-friendly LLM-integrated XR systems. © 2024 Copyright held by the owner/author(s).},
keywords = {Augmented Reality, Computer simulation languages, Evaluation Metrics, Extended reality, Language Model, Large language model, large language models, Mixed reality, Modeling performance, Natural language processing systems, Physical world, Spatial computing, spatial data, user experience, Users' experiences, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}