AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Kadri, M.; Boubakri, F. -E.; Azough, A.; Zidani, K. A.
Game-Based VR Anatomy Learning with Generative AI: Proof of Concept for GenAiVR-Lab Proceedings Article
In: pp. 100–105, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331534899 (ISBN).
Abstract | Links | BibTeX | Tags: Anatomy educations, Artificial intelligence, Bone, Bone fragments, Collaborative learning, E-Learning, Educational Evaluation, Game-Based, Game-based learning, Generative AI, Human computer interaction, Human skeleton, Laboratories, Learning systems, Medical students, Proof of concept, Virtual Reality, Virtual Reality Anatomy
@inproceedings{kadri_game-based_2025,
title = {Game-Based VR Anatomy Learning with Generative AI: Proof of Concept for GenAiVR-Lab},
author = {M. Kadri and F. -E. Boubakri and A. Azough and K. A. Zidani},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105015604062&doi=10.1109%2FSCME62582.2025.11104860&partnerID=40&md5=c557ca7975a9683e8c271fbb3a21c4e4},
doi = {10.1109/SCME62582.2025.11104860},
isbn = {9798331534899 (ISBN)},
year = {2025},
date = {2025-01-01},
pages = {100–105},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Anatomy education often fails to engage learners or foster precise 3D spatial understanding of complex systems like the human skeleton. We present a Game-Based VR Anatomy Learning system with Generative AI, introduced as a Proof of Concept for our GenAiVR-Lab framework. This prototype validates the foundational pillars of our future development. In the Anatomy Lab scenario, 25 medical students explore a virtual skeleton and undertake a timed mission: assemble three bone fragments within two minutes. Incorrect picks are disabled with point deductions; learners may request a one-shot conversational hint from a ChatGPT-powered Virtual Anatomy Instructor; if time expires, a teammate continues with remaining time. We measured perception changes using pre- and post-test versions of four Perspective Questionnaires: Learning Perspective (LPQ), VR-AI Perspective (VRAIPQ), Generative AI Perspective (GAIPQ), and Game-Based Learning Perspective (GBLPQ). Results demonstrate significant improvements across all four perspectives, with mean scores increasing by approximately 1.3 points on the 5-point Likert scale and nearly all participants showing positive gains. Effect sizes ranged from 2.52 to 3.34, indicating large practical significance, with all measures reaching statistical significance. These findings demonstrate that collaborative game mechanics and generative AI guidance enhance engagement and spatial reasoning. We contrast this PoC with the full GenAiVR-Lab vision - integrating Retrieval-Augmented Generation for precise feedback, multimodal I/O, and adaptive pathways - and outline a roadmap for next-generation immersive anatomy education. © 2025 Elsevier B.V., All rights reserved.},
keywords = {Anatomy educations, Artificial intelligence, Bone, Bone fragments, Collaborative learning, E-Learning, Educational Evaluation, Game-Based, Game-based learning, Generative AI, Human computer interaction, Human skeleton, Laboratories, Learning systems, Medical students, Proof of concept, Virtual Reality, Virtual Reality Anatomy},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Ayre, D.; Dougherty, C.; Zhao, Y.
IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE (AI) INSTRUCTIONAL SUPPORT SYSTEM IN A VIRTUAL REALITY (VR) THERMAL-FLUIDS LABORATORY Proceedings Article
In: ASME Int Mech Eng Congress Expos Proc, American Society of Mechanical Engineers (ASME), 2023, ISBN: 978-079188765-3 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, E-Learning, Education computing, Engineering education, Fluid mechanics, Generative AI, generative artificial intelligence, GPT, High educations, Instructional support, Laboratories, Laboratory class, Laboratory experiments, Physical laboratory, Professional aspects, Students, Support systems, Thermal fluids, Virtual Reality, Virtual-reality environment
@inproceedings{ayre_implementation_2023,
title = {IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE (AI) INSTRUCTIONAL SUPPORT SYSTEM IN A VIRTUAL REALITY (VR) THERMAL-FLUIDS LABORATORY},
author = {D. Ayre and C. Dougherty and Y. Zhao},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185393784&doi=10.1115%2fIMECE2023-112683&partnerID=40&md5=c2492592a016478a4b3591ff82a93be5},
doi = {10.1115/IMECE2023-112683},
isbn = {978-079188765-3 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {ASME Int Mech Eng Congress Expos Proc},
volume = {8},
publisher = {American Society of Mechanical Engineers (ASME)},
abstract = {Physical laboratory experiments have long been the cornerstone of higher education, providing future engineers practical real-life experience invaluable to their careers. However, demand for laboratory time has exceeded physical capabilities. Virtual reality (VR) labs have proven to retain many benefits of attending physical labs while also providing significant advantages only available in a VR environment. Previously, our group had developed a pilot VR lab that replicated six (6) unique thermal-fluids lab experiments developed using the Unity game engine. One of the VR labs was tested in a thermal-fluid mechanics laboratory class with favorable results, but students highlighted the need for additional assistance within the VR simulation. In response to this testing, we have incorporated an artificial intelligence (AI) assistant to aid students within the VR environment by developing an interaction model. Utilizing the Generative Pre-trained Transformer 4 (GPT-4) large language model (LLM) and augmented context retrieval, the AI assistant can provide reliable instruction and troubleshoot errors while students conduct the lab procedure to provide an experience similar to a real-life lab assistant. The updated VR lab was tested in two laboratory classes and while the overall tone of student response to an AI-powered assistant was excitement and enthusiasm, observations and other recorded data show that students are currently unsure of how to utilize this new technology, which will help guide future refinement of AI components within the VR environment. © 2023 by ASME.},
keywords = {Artificial intelligence, E-Learning, Education computing, Engineering education, Fluid mechanics, Generative AI, generative artificial intelligence, GPT, High educations, Instructional support, Laboratories, Laboratory class, Laboratory experiments, Physical laboratory, Professional aspects, Students, Support systems, Thermal fluids, Virtual Reality, Virtual-reality environment},
pubstate = {published},
tppubtype = {inproceedings}
}