AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Alibrahim, Y.; Ibrahim, M.; Gurdayal, D.; Munshi, M.
AI speechbots and 3D segmentations in virtual reality improve radiology on-call training in resource-limited settings Journal Article
In: Intelligence-Based Medicine, vol. 11, 2025, ISSN: 26665212 (ISSN).
Abstract | Links | BibTeX | Tags: 3D segmentation, AI speechbots, Article, artificial intelligence chatbot, ChatGPT, computer assisted tomography, Deep learning, headache, human, Image segmentation, interventional radiology, Large language model, Likert scale, nausea, Proof of concept, prospective study, radiology, radiology on call training, resource limited setting, Teaching, Training, ultrasound, Virtual Reality, voice recognition
@article{alibrahim_ai_2025,
title = {AI speechbots and 3D segmentations in virtual reality improve radiology on-call training in resource-limited settings},
author = {Y. Alibrahim and M. Ibrahim and D. Gurdayal and M. Munshi},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001472313&doi=10.1016%2fj.ibmed.2025.100245&partnerID=40&md5=623a0ceaa07e5516a296420d25c3033b},
doi = {10.1016/j.ibmed.2025.100245},
issn = {26665212 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Intelligence-Based Medicine},
volume = {11},
abstract = {Objective: Evaluate the use of large-language model (LLM) speechbot tools and deep learning-assisted generation of 3D reconstructions when integrated in a virtual reality (VR) setting to teach radiology on-call topics to radiology residents. Methods: Three first year radiology residents in Guyana were enrolled in an 8-week radiology course that focused on preparation for on-call duties. The course, delivered via VR headsets with custom software integrating LLM-powered speechbots trained on imaging reports and 3D reconstructions segmented with the help of a deep learning model. Each session focused on a specific radiology area, employing a didactic and case-based learning approach, enhanced with 3D reconstructions and an LLM-powered speechbot. Post-session, residents reassessed their knowledge and provided feedback on their VR and LLM-powered speechbot experiences. Results/discussion: Residents found that the 3D reconstructions segmented semi-automatically by deep learning algorithms and AI-driven self-learning via speechbot was highly valuable. The 3D reconstructions, especially in the interventional radiology session, were helpful and the benefit is augmented by VR where navigating the models is seamless and perception of depth is pronounced. Residents also found conversing with the AI-speechbot seamless and was valuable in their post session self-learning. The major drawback of VR was motion sickness, which was mild and improved over time. Conclusion: AI-assisted VR radiology education could be used to develop new and accessible ways of teaching a variety of radiology topics in a seamless and cost-effective way. This could be especially useful in supporting radiology education remotely in regions which lack local radiology expertise. © 2025},
keywords = {3D segmentation, AI speechbots, Article, artificial intelligence chatbot, ChatGPT, computer assisted tomography, Deep learning, headache, human, Image segmentation, interventional radiology, Large language model, Likert scale, nausea, Proof of concept, prospective study, radiology, radiology on call training, resource limited setting, Teaching, Training, ultrasound, Virtual Reality, voice recognition},
pubstate = {published},
tppubtype = {article}
}
2024
Krauss, C.; Bassbouss, L.; Upravitelev, M.; An, T. -S.; Altun, D.; Reray, L.; Balitzki, E.; Tamimi, T. El; Karagülle, M.
Opportunities and Challenges in Developing Educational AI-Assistants for the Metaverse Proceedings Article
In: R.A., Sottilare; J., Schwarz (Ed.): Lect. Notes Comput. Sci., pp. 219–238, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303160608-3 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, AI-assistant, AI-Assistants, Computational Linguistics, Computer aided instruction, Concept-based, E-Learning, Education, Interoperability, Language Model, Large language model, large language models, Learning Environments, Learning systems, Learning Technologies, Learning technology, LLM, Metaverse, Metaverses, Natural language processing systems, Proof of concept, User interfaces, Virtual assistants, Virtual Reality
@inproceedings{krauss_opportunities_2024,
title = {Opportunities and Challenges in Developing Educational AI-Assistants for the Metaverse},
author = {C. Krauss and L. Bassbouss and M. Upravitelev and T. -S. An and D. Altun and L. Reray and E. Balitzki and T. El Tamimi and M. Karagülle},
editor = {Sottilare R.A. and Schwarz J.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196214138&doi=10.1007%2f978-3-031-60609-0_16&partnerID=40&md5=9a66876cb30e9e5d287a86e6cfa66e05},
doi = {10.1007/978-3-031-60609-0_16},
isbn = {03029743 (ISSN); 978-303160608-3 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {14727 LNCS},
pages = {219–238},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The paper explores the opportunities and challenges for metaverse learning environments with AI-Assistants based on Large Language Models. A proof of concept based on popular but proprietary technologies is presented that enables a natural language exchange between the user and an AI-based medical expert in a highly immersive environment based on the Unreal Engine. The answers generated by ChatGPT are not only played back lip-synchronously, but also visualized in the VR environment using a 3D model of a skeleton. Usability and user experience play a particularly important role in the development of the highly immersive AI-Assistant. The proof of concept serves to illustrate the opportunities and challenges that lie in the merging of large language models, metaverse applications and educational ecosystems, which are self-contained research areas. Development strategies, tools and interoperability standards will be presented to facilitate future developments in this triangle of tension. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {3D modeling, AI-assistant, AI-Assistants, Computational Linguistics, Computer aided instruction, Concept-based, E-Learning, Education, Interoperability, Language Model, Large language model, large language models, Learning Environments, Learning systems, Learning Technologies, Learning technology, LLM, Metaverse, Metaverses, Natural language processing systems, Proof of concept, User interfaces, Virtual assistants, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Weid, M.; Khezrian, N.; Mana, A. P.; Farzinnejad, F.; Grubert, J.
GenDeck: Towards a HoloDeck with Text-to-3D Model Generation Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW, pp. 1188–1189, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835037449-0 (ISBN).
Abstract | Links | BibTeX | Tags: 3D content, 3D modeling, 3D models, 3d-modeling, Computational costs, Extende Reality, Human computer interaction, Immersive virtual reality, Knowledge Work, Model generation, Proof of concept, Three dimensional computer graphics, Virtual Reality, Visual fidelity
@inproceedings{weid_gendeck_2024,
title = {GenDeck: Towards a HoloDeck with Text-to-3D Model Generation},
author = {M. Weid and N. Khezrian and A. P. Mana and F. Farzinnejad and J. Grubert},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195600251&doi=10.1109%2fVRW62533.2024.00388&partnerID=40&md5=6dab0cc05259fa2dbe0a2b3806e569af},
doi = {10.1109/VRW62533.2024.00388},
isbn = {979-835037449-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW},
pages = {1188–1189},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Generative Artificial Intelligence has the potential to substantially transform the way 3D content for Extended Reality applications is produced. Specifically, the development of text-to-3D and image-to-3D generators with increasing visual fidelity and decreasing computational costs is thriving quickly. Within this work, we present GenDeck, a proof-of-concept application to experience text-to-3D model generation inside an immersive Virtual Reality environment. © 2024 IEEE.},
keywords = {3D content, 3D modeling, 3D models, 3d-modeling, Computational costs, Extende Reality, Human computer interaction, Immersive virtual reality, Knowledge Work, Model generation, Proof of concept, Three dimensional computer graphics, Virtual Reality, Visual fidelity},
pubstate = {published},
tppubtype = {inproceedings}
}