AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Alibrahim, Y.; Ibrahim, M.; Gurdayal, D.; Munshi, M.
AI speechbots and 3D segmentations in virtual reality improve radiology on-call training in resource-limited settings Journal Article
In: Intelligence-Based Medicine, vol. 11, 2025, ISSN: 26665212 (ISSN), (Publisher: Elsevier B.V.).
Abstract | Links | BibTeX | Tags: 3D segmentation, AI speechbots, Article, artificial intelligence chatbot, ChatGPT, computer assisted tomography, Deep learning, headache, human, Image segmentation, interventional radiology, Large language model, Likert scale, nausea, Proof of concept, prospective study, radiology, radiology on call training, resource limited setting, Teaching, Training, ultrasound, Virtual Reality, voice recognition
@article{alibrahim_ai_2025,
title = {AI speechbots and 3D segmentations in virtual reality improve radiology on-call training in resource-limited settings},
author = {Y. Alibrahim and M. Ibrahim and D. Gurdayal and M. Munshi},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001472313&doi=10.1016%2Fj.ibmed.2025.100245&partnerID=40&md5=981139e173e781b67dba5a46be64de31},
doi = {10.1016/j.ibmed.2025.100245},
issn = {26665212 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Intelligence-Based Medicine},
volume = {11},
abstract = {Objective: Evaluate the use of large-language model (LLM) speechbot tools and deep learning-assisted generation of 3D reconstructions when integrated in a virtual reality (VR) setting to teach radiology on-call topics to radiology residents. Methods: Three first year radiology residents in Guyana were enrolled in an 8-week radiology course that focused on preparation for on-call duties. The course, delivered via VR headsets with custom software integrating LLM-powered speechbots trained on imaging reports and 3D reconstructions segmented with the help of a deep learning model. Each session focused on a specific radiology area, employing a didactic and case-based learning approach, enhanced with 3D reconstructions and an LLM-powered speechbot. Post-session, residents reassessed their knowledge and provided feedback on their VR and LLM-powered speechbot experiences. Results/discussion: Residents found that the 3D reconstructions segmented semi-automatically by deep learning algorithms and AI-driven self-learning via speechbot was highly valuable. The 3D reconstructions, especially in the interventional radiology session, were helpful and the benefit is augmented by VR where navigating the models is seamless and perception of depth is pronounced. Residents also found conversing with the AI-speechbot seamless and was valuable in their post session self-learning. The major drawback of VR was motion sickness, which was mild and improved over time. Conclusion: AI-assisted VR radiology education could be used to develop new and accessible ways of teaching a variety of radiology topics in a seamless and cost-effective way. This could be especially useful in supporting radiology education remotely in regions which lack local radiology expertise. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Elsevier B.V.},
keywords = {3D segmentation, AI speechbots, Article, artificial intelligence chatbot, ChatGPT, computer assisted tomography, Deep learning, headache, human, Image segmentation, interventional radiology, Large language model, Likert scale, nausea, Proof of concept, prospective study, radiology, radiology on call training, resource limited setting, Teaching, Training, ultrasound, Virtual Reality, voice recognition},
pubstate = {published},
tppubtype = {article}
}
Salinas, C. S.; Magudia, K.; Sangal, A.; Ren, L.; Segars, W. P.
In-silico CT simulations of deep learning generated heterogeneous phantoms Journal Article
In: Biomedical Physics and Engineering Express, vol. 11, no. 4, 2025, ISSN: 20571976 (ISSN), (Publisher: Institute of Physics).
Abstract | Links | BibTeX | Tags: adult, algorithm, Algorithms, anatomical concepts, anatomical location, anatomical variation, Article, Biological organs, bladder, Bone, bone marrow, CGAN, colon, comparative study, computer assisted tomography, Computer graphics, computer model, Computer Simulation, Computer-Assisted, Computerized tomography, CT organ texture, CT organ textures, CT scanners, CT synthesis, CT-scan, Deep learning, fluorodeoxyglucose f 18, Generative Adversarial Network, Generative AI, histogram, human, human tissue, Humans, III-V semiconductors, image analysis, Image processing, Image segmentation, Image texture, Imaging, imaging phantom, intra-abdominal fat, kidney blood vessel, Learning systems, liver, lung, major clinical study, male, mean absolute error, Medical Imaging, neoplasm, Phantoms, procedures, prostate muscle, radiological parameters, signal noise ratio, Signal to noise ratio, Signal-To-Noise Ratio, simulation, Simulation platform, small intestine, Statistical tests, stomach, structural similarity index, subcutaneous fat, Textures, three dimensional double u net conditional generative adversarial network, Three-Dimensional, three-dimensional imaging, Tomography, Virtual CT scanner, Virtual Reality, Virtual trial, virtual trials, whole body CT, X-Ray Computed, x-ray computed tomography
@article{salinas_-silico_2025,
title = {In-silico CT simulations of deep learning generated heterogeneous phantoms},
author = {C. S. Salinas and K. Magudia and A. Sangal and L. Ren and W. P. Segars},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105010297226&doi=10.1088%2F2057-1976%2Fade9c9&partnerID=40&md5=47f211fd93f80e407dcd7e4c490976c2},
doi = {10.1088/2057-1976/ade9c9},
issn = {20571976 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Biomedical Physics and Engineering Express},
volume = {11},
number = {4},
abstract = {Current virtual imaging phantoms primarily emphasize geometric accuracy of anatomical structures. However, to enhance realism, it is also important to incorporate intra-organ detail. Because biological tissues are heterogeneous in composition, virtual phantoms should reflect this by including realistic intra-organ texture and material variation. We propose training two 3D Double U-Net conditional generative adversarial networks (3D DUC-GAN) to generate sixteen unique textures that encompass organs found within the torso. The model was trained on 378 CT image-segmentation pairs taken from a publicly available dataset with 18 additional pairs reserved for testing. Textured phantoms were generated and imaged using DukeSim, a virtual CT simulation platform. Results showed that the deep learning model was able to synthesize realistic heterogeneous phantoms from a set of homogeneous phantoms. These phantoms were compared with original CT scans and had a mean absolute difference of 46.15 ± 1.06 HU. The structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were 0.86 ± 0.004 and 28.62 ± 0.14, respectively. The maximum mean discrepancy between the generated and actual distribution was 0.0016. These metrics marked an improvement of 27%, 5.9%, 6.2%, and 28% respectively, compared to current homogeneous texture methods. The generated phantoms that underwent a virtual CT scan had a closer visual resemblance to the true CT scan compared to the previous method. The resulting heterogeneous phantoms offer a significant step toward more realistic in silico trials, enabling enhanced simulation of imaging procedures with greater fidelity to true anatomical variation. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Institute of Physics},
keywords = {adult, algorithm, Algorithms, anatomical concepts, anatomical location, anatomical variation, Article, Biological organs, bladder, Bone, bone marrow, CGAN, colon, comparative study, computer assisted tomography, Computer graphics, computer model, Computer Simulation, Computer-Assisted, Computerized tomography, CT organ texture, CT organ textures, CT scanners, CT synthesis, CT-scan, Deep learning, fluorodeoxyglucose f 18, Generative Adversarial Network, Generative AI, histogram, human, human tissue, Humans, III-V semiconductors, image analysis, Image processing, Image segmentation, Image texture, Imaging, imaging phantom, intra-abdominal fat, kidney blood vessel, Learning systems, liver, lung, major clinical study, male, mean absolute error, Medical Imaging, neoplasm, Phantoms, procedures, prostate muscle, radiological parameters, signal noise ratio, Signal to noise ratio, Signal-To-Noise Ratio, simulation, Simulation platform, small intestine, Statistical tests, stomach, structural similarity index, subcutaneous fat, Textures, three dimensional double u net conditional generative adversarial network, Three-Dimensional, three-dimensional imaging, Tomography, Virtual CT scanner, Virtual Reality, Virtual trial, virtual trials, whole body CT, X-Ray Computed, x-ray computed tomography},
pubstate = {published},
tppubtype = {article}
}