AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Song, T.; Pabst, F.; Eck, U.; Navab, N.
Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2901–2911, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: 3D reconstruction, adult, Augmented Reality, Computer graphics, computer interface, echography, female, human, Humans, Imaging, Intelligent robots, Intelligent virtual agents, Language Model, male, Medical robotics, Middle Aged, Mixed reality, Patient Acceptance of Health Care, patient attitude, Patient comfort, procedures, Real-world, Reality visualization, Robotic Ultrasound, Robotics, Three-Dimensional, three-dimensional imaging, Trust and Acceptance, Ultrasonic applications, Ultrasonic equipment, Ultrasonography, Ultrasound probes, User-Computer Interface, Virtual agent, Virtual assistants, Virtual environments, Virtual Reality, Visual languages, Visualization, Young Adult
@article{song_enhancing_2025,
title = {Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations},
author = {T. Song and F. Pabst and U. Eck and N. Navab},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003687673&doi=10.1109%2fTVCG.2025.3549181&partnerID=40&md5=1d46569933582ecf5e967f0794aafc07},
doi = {10.1109/TVCG.2025.3549181},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2901–2911},
abstract = {Robotic ultrasound systems have the potential to improve medical diagnostics, but patient acceptance remains a key challenge. To address this, we propose a novel system that combines an AI-based virtual agent, powered by a large language model (LLM), with three mixed reality visualizations aimed at enhancing patient comfort and trust. The LLM enables the virtual assistant to engage in natural, conversational dialogue with patients, answering questions in any format and offering real-time reassurance, creating a more intelligent and reliable interaction. The virtual assistant is animated as controlling the ultrasound probe, giving the impression that the robot is guided by the assistant. The first visualization employs augmented reality (AR), allowing patients to see the real world and the robot with the virtual avatar superimposed. The second visualization is an augmented virtuality (AV) environment, where the real-world body part being scanned is visible, while a 3D Gaussian Splatting reconstruction of the room, excluding the robot, forms the virtual environment. The third is a fully immersive virtual reality (VR) experience, featuring the same 3D reconstruction but entirely virtual, where the patient sees a virtual representation of their body being scanned in a robot-free environment. In this case, the virtual ultrasound probe, mirrors the movement of the probe controlled by the robot, creating a synchronized experience as it touches and moves over the patient's virtual body. We conducted a comprehensive agent-guided robotic ultrasound study with all participants, comparing these visualizations against a standard robotic ultrasound procedure. Results showed significant improvements in patient trust, acceptance, and comfort. Based on these findings, we offer insights into designing future mixed reality visualizations and virtual agents to further enhance patient comfort and acceptance in autonomous medical procedures. © 1995-2012 IEEE.},
keywords = {3D reconstruction, adult, Augmented Reality, Computer graphics, computer interface, echography, female, human, Humans, Imaging, Intelligent robots, Intelligent virtual agents, Language Model, male, Medical robotics, Middle Aged, Mixed reality, Patient Acceptance of Health Care, patient attitude, Patient comfort, procedures, Real-world, Reality visualization, Robotic Ultrasound, Robotics, Three-Dimensional, three-dimensional imaging, Trust and Acceptance, Ultrasonic applications, Ultrasonic equipment, Ultrasonography, Ultrasound probes, User-Computer Interface, Virtual agent, Virtual assistants, Virtual environments, Virtual Reality, Visual languages, Visualization, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Chen, J.; Wu, X.; Lan, T.; Li, B.
LLMER: Crafting Interactive Extended Reality Worlds with JSON Data Generated by Large Language Models Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2715–2724, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: % reductions, 3D modeling, algorithm, Algorithms, Augmented Reality, Coding errors, Computer graphics, Computer interaction, computer interface, Computer simulation languages, Extended reality, generative artificial intelligence, human, Human users, human-computer interaction, Humans, Imaging, Immersive, Language, Language Model, Large language model, large language models, Metadata, Natural Language Processing, Natural language processing systems, Natural languages, procedures, Script generation, Spatio-temporal data, Three dimensional computer graphics, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Virtual Reality
@article{chen_llmer_2025,
title = {LLMER: Crafting Interactive Extended Reality Worlds with JSON Data Generated by Large Language Models},
author = {J. Chen and X. Wu and T. Lan and B. Li},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003825793&doi=10.1109%2fTVCG.2025.3549549&partnerID=40&md5=da4681d0714548e3a7e0c8c3295d2348},
doi = {10.1109/TVCG.2025.3549549},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2715–2724},
abstract = {The integration of Large Language Models (LLMs) like GPT-4 with Extended Reality (XR) technologies offers the potential to build truly immersive XR environments that interact with human users through natural language, e.g., generating and animating 3D scenes from audio inputs. However, the complexity of XR environments makes it difficult to accurately extract relevant contextual data and scene/object parameters from an overwhelming volume of XR artifacts. It leads to not only increased costs with pay-per-use models, but also elevated levels of generation errors. Moreover, existing approaches focusing on coding script generation are often prone to generation errors, resulting in flawed or invalid scripts, application crashes, and ultimately a degraded user experience. To overcome these challenges, we introduce LLMER, a novel framework that creates interactive XR worlds using JSON data generated by LLMs. Unlike prior approaches focusing on coding script generation, LLMER translates natural language inputs into JSON data, significantly reducing the likelihood of application crashes and processing latency. It employs a multi-stage strategy to supply only the essential contextual information adapted to the user's request and features multiple modules designed for various XR tasks. Our preliminary user study reveals the effectiveness of the proposed system, with over 80% reduction in consumed tokens and around 60% reduction in task completion time compared to state-of-the-art approaches. The analysis of users' feedback also illuminates a series of directions for further optimization. © 1995-2012 IEEE.},
keywords = {% reductions, 3D modeling, algorithm, Algorithms, Augmented Reality, Coding errors, Computer graphics, Computer interaction, computer interface, Computer simulation languages, Extended reality, generative artificial intelligence, human, Human users, human-computer interaction, Humans, Imaging, Immersive, Language, Language Model, Large language model, large language models, Metadata, Natural Language Processing, Natural language processing systems, Natural languages, procedures, Script generation, Spatio-temporal data, Three dimensional computer graphics, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
2024
Pooryousef, V.; Cordeil, M.; Besançon, L.; Bassed, R.; Dwyer, T.
Collaborative Forensic Autopsy Documentation and Supervised Report Generation using a Hybrid Mixed-Reality Environment and Generative AI Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 11, pp. 7452–7462, 2024, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Autopsy, Causes of death, Complex procedure, Computer graphics, computer interface, Data visualization, Digital forensics, Documentation, Forensic autopsy, Forensic engineering, Forensic investigation, forensic science, Forensic Sciences, Generative AI, human, Humans, Imaging, Information Management, Laws and legislation, Mixed reality, Mixed-reality environment, Post mortem imaging, procedures, Report generation, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Visualization, Workflow
@article{pooryousef_collaborative_2024,
title = {Collaborative Forensic Autopsy Documentation and Supervised Report Generation using a Hybrid Mixed-Reality Environment and Generative AI},
author = {V. Pooryousef and M. Cordeil and L. Besançon and R. Bassed and T. Dwyer},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204066202&doi=10.1109%2fTVCG.2024.3456212&partnerID=40&md5=d1abaf1aaf3b033df21067ea34b8b98a},
doi = {10.1109/TVCG.2024.3456212},
issn = {10772626 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {30},
number = {11},
pages = {7452–7462},
abstract = {—Forensic investigation is a complex procedure involving experts working together to establish cause of death and report findings to legal authorities. While new technologies are being developed to provide better post-mortem imaging capabilities—including mixed-reality (MR) tools to support 3D visualisation of such data—these tools do not integrate seamlessly into their existing collaborative workflow and report authoring process, requiring extra steps, e.g. to extract imagery from the MR tool and combine with physical autopsy findings for inclusion in the report. Therefore, in this work we design and evaluate a new forensic autopsy report generation workflow and present a novel documentation system using hybrid mixed-reality approaches to integrate visualisation, voice and hand interaction, as well as collaboration and procedure recording. Our preliminary findings indicate that this approach has the potential to improve data management, aid reviewability, and thus, achieve more robust standards. Further, it potentially streamlines report generation and minimise dependency on external tools and assistance, reducing autopsy time and related costs. This system also offers significant potential for education. A free copy of this paper and all supplemental materials are available at https://osf.io/ygfzx. © 2024 IEEE.},
keywords = {Artificial intelligence, Augmented Reality, Autopsy, Causes of death, Complex procedure, Computer graphics, computer interface, Data visualization, Digital forensics, Documentation, Forensic autopsy, Forensic engineering, Forensic investigation, forensic science, Forensic Sciences, Generative AI, human, Humans, Imaging, Information Management, Laws and legislation, Mixed reality, Mixed-reality environment, Post mortem imaging, procedures, Report generation, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Visualization, Workflow},
pubstate = {published},
tppubtype = {article}
}