AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Vachha, C.; Kang, Y.; Dive, Z.; Chidambaram, A.; Gupta, A.; Jun, E.; Hartmann, B.
Dreamcrafter: Immersive Editing of 3D Radiance Fields Through Flexible, Generative Inputs and Outputs Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2025, ISBN: 979-840071394-1 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D scenes, AI assisted creativity tool, Animation, Computer vision, Direct manipulation, Drawing (graphics), Gaussian Splatting, Gaussians, Generative AI, Graphic, Graphics, High level languages, Immersive, Interactive computer graphics, Splatting, Three dimensional computer graphics, Virtual Reality, Worldbuilding interface
@inproceedings{vachha_dreamcrafter_2025,
title = {Dreamcrafter: Immersive Editing of 3D Radiance Fields Through Flexible, Generative Inputs and Outputs},
author = {C. Vachha and Y. Kang and Z. Dive and A. Chidambaram and A. Gupta and E. Jun and B. Hartmann},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005725679&doi=10.1145%2f3706598.3714312&partnerID=40&md5=68cf2a08d3057fd9756e25d53959872b},
doi = {10.1145/3706598.3714312},
isbn = {979-840071394-1 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {Authoring 3D scenes is a central task for spatial computing applications. Competing visions for lowering existing barriers are (1) focus on immersive, direct manipulation of 3D content or (2) leverage AI techniques that capture real scenes (3D Radiance Fields such as, NeRFs, 3D Gaussian Splatting) and modify them at a higher level of abstraction, at the cost of high latency. We unify the complementary strengths of these approaches and investigate how to integrate generative AI advances into real-time, immersive 3D Radiance Field editing. We introduce Dreamcrafter, a VR-based 3D scene editing system that: (1) provides a modular architecture to integrate generative AI algorithms; (2) combines different levels of control for creating objects, including natural language and direct manipulation; and (3) introduces proxy representations that support interaction during high-latency operations. We contribute empirical findings on control preferences and discuss how generative AI interfaces beyond text input enhance creativity in scene editing and world building. © 2025 Copyright held by the owner/author(s).},
keywords = {3D modeling, 3D scenes, AI assisted creativity tool, Animation, Computer vision, Direct manipulation, Drawing (graphics), Gaussian Splatting, Gaussians, Generative AI, Graphic, Graphics, High level languages, Immersive, Interactive computer graphics, Splatting, Three dimensional computer graphics, Virtual Reality, Worldbuilding interface},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Zhang, L.; Pan, J.; Gettig, J.; Oney, S.; Guo, A.
VRCopilot: Authoring 3D Layouts with Generative AI Models in VR Proceedings Article
In: UIST - Proc. Annual ACM Symp. User Interface Softw. Technol., Association for Computing Machinery, Inc, 2024, ISBN: 979-840070628-8 (ISBN).
Abstract | Links | BibTeX | Tags: 3D layouts, 3D modeling, 3D scenes, Automatic creations, Co-creation, Direct manipulation, Fluid interactions, Generative adversarial networks, Generative AI, Human-AI Co-creation, Immersive authoring, Scaffolds, Three dimensional computer graphics, User agencies, Virtual environments, Virtual Reality
@inproceedings{zhang_vrcopilot_2024,
title = {VRCopilot: Authoring 3D Layouts with Generative AI Models in VR},
author = {L. Zhang and J. Pan and J. Gettig and S. Oney and A. Guo},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85215072893&doi=10.1145%2f3654777.3676451&partnerID=40&md5=3f0845d0dd85ef93b97750f4a7d8b44e},
doi = {10.1145/3654777.3676451},
isbn = {979-840070628-8 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {UIST - Proc. Annual ACM Symp. User Interface Softw. Technol.},
publisher = {Association for Computing Machinery, Inc},
abstract = {Immersive authoring provides an intuitive medium for users to create 3D scenes via direct manipulation in Virtual Reality (VR). Recent advances in generative AI have enabled the automatic creation of realistic 3D layouts. However, it is unclear how capabilities of generative AI can be used in immersive authoring to support fluid interactions, user agency, and creativity. We introduce VRCopilot, a mixed-initiative system that integrates pre-trained generative AI models into immersive authoring to facilitate human-AI co-creation in VR. VRCopilot presents multimodal interactions to support rapid prototyping and iterations with AI, and intermediate representations such as wireframes to augment user controllability over the created content. Through a series of user studies, we evaluated the potential and challenges in manual, scaffolded, and automatic creation in immersive authoring. We found that scaffolded creation using wireframes enhanced the user agency compared to automatic creation. We also found that manual creation via multimodal specification offers the highest sense of creativity and agency. © 2024 ACM.},
keywords = {3D layouts, 3D modeling, 3D scenes, Automatic creations, Co-creation, Direct manipulation, Fluid interactions, Generative adversarial networks, Generative AI, Human-AI Co-creation, Immersive authoring, Scaffolds, Three dimensional computer graphics, User agencies, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}