AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Tian, Y.; Li, X.; Cheng, Z.; Huang, Y.; Yu, T.
In: Sensors, vol. 25, no. 15, 2025, ISSN: 14248220 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).
Abstract | Links | BibTeX | Tags: 3D faces, 3d facial model, 3D facial models, 3D modeling, adaptation, adult, Article, Audience perception evaluation, benchmarking, controlled study, Cross-modal, Face generation, Facial modeling, facies, Feature extraction, feedback, feedback system, female, Geometry, High-fidelity, human, illumination, Immersive media, Lighting, male, movie, Neural radiance field, Neural Radiance Fields, perception, Quality control, Rendering (computer graphics), Semantics, sensor, Three dimensional computer graphics, Virtual production, Virtual Reality
@article{tian_design_2025,
title = {Design of Realistic and Artistically Expressive 3D Facial Models for Film AIGC: A Cross-Modal Framework Integrating Audience Perception Evaluation},
author = {Y. Tian and X. Li and Z. Cheng and Y. Huang and T. Yu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105013137724&doi=10.3390%2Fs25154646&partnerID=40&md5=8508a27b693f0857ce7cb58e97a2705c},
doi = {10.3390/s25154646},
issn = {14248220 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Sensors},
volume = {25},
number = {15},
abstract = {The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this study proposes a cross-modal 3D face generation framework based on single-view semantic masks. It utilizes Swin Transformer for multi-level feature extraction and combines with NeRF for illumination decoupled rendering. We utilize physical rendering equations to explicitly separate surface reflectance from ambient lighting to achieve robust adaptation to complex lighting variations. In addition, to address geometric errors across illumination scenes, we construct geometric a priori constraint networks by mapping 2D facial features to 3D parameter space as regular terms with the help of semantic masks. On the CelebAMask-HQ dataset, this method achieves a leading score of SSIM = 0.892 (37.6% improvement from baseline) with FID = 40.6. The generated faces excel in symmetry and detail fidelity with realism and aesthetic scores of 8/10 and 7/10, respectively, in a perceptual evaluation with 1000 viewers. By combining physical-level illumination decoupling with semantic geometry a priori, this paper establishes a quantifiable feedback mechanism between objective metrics and human aesthetic evaluation, providing a new paradigm for aesthetic quality assessment of AI-generated content. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Multidisciplinary Digital Publishing Institute (MDPI)},
keywords = {3D faces, 3d facial model, 3D facial models, 3D modeling, adaptation, adult, Article, Audience perception evaluation, benchmarking, controlled study, Cross-modal, Face generation, Facial modeling, facies, Feature extraction, feedback, feedback system, female, Geometry, High-fidelity, human, illumination, Immersive media, Lighting, male, movie, Neural radiance field, Neural Radiance Fields, perception, Quality control, Rendering (computer graphics), Semantics, sensor, Three dimensional computer graphics, Virtual production, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}