AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Tian, Y.; Li, X.; Cheng, Z.; Huang, Y.; Yu, T.
In: Sensors, vol. 25, no. 15, 2025, ISSN: 14248220 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).
Abstract | Links | BibTeX | Tags: 3D faces, 3d facial model, 3D facial models, 3D modeling, adaptation, adult, Article, Audience perception evaluation, benchmarking, controlled study, Cross-modal, Face generation, Facial modeling, facies, Feature extraction, feedback, feedback system, female, Geometry, High-fidelity, human, illumination, Immersive media, Lighting, male, movie, Neural radiance field, Neural Radiance Fields, perception, Quality control, Rendering (computer graphics), Semantics, sensor, Three dimensional computer graphics, Virtual production, Virtual Reality
@article{tian_design_2025,
title = {Design of Realistic and Artistically Expressive 3D Facial Models for Film AIGC: A Cross-Modal Framework Integrating Audience Perception Evaluation},
author = {Y. Tian and X. Li and Z. Cheng and Y. Huang and T. Yu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105013137724&doi=10.3390%2Fs25154646&partnerID=40&md5=8508a27b693f0857ce7cb58e97a2705c},
doi = {10.3390/s25154646},
issn = {14248220 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Sensors},
volume = {25},
number = {15},
abstract = {The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this study proposes a cross-modal 3D face generation framework based on single-view semantic masks. It utilizes Swin Transformer for multi-level feature extraction and combines with NeRF for illumination decoupled rendering. We utilize physical rendering equations to explicitly separate surface reflectance from ambient lighting to achieve robust adaptation to complex lighting variations. In addition, to address geometric errors across illumination scenes, we construct geometric a priori constraint networks by mapping 2D facial features to 3D parameter space as regular terms with the help of semantic masks. On the CelebAMask-HQ dataset, this method achieves a leading score of SSIM = 0.892 (37.6% improvement from baseline) with FID = 40.6. The generated faces excel in symmetry and detail fidelity with realism and aesthetic scores of 8/10 and 7/10, respectively, in a perceptual evaluation with 1000 viewers. By combining physical-level illumination decoupling with semantic geometry a priori, this paper establishes a quantifiable feedback mechanism between objective metrics and human aesthetic evaluation, providing a new paradigm for aesthetic quality assessment of AI-generated content. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Multidisciplinary Digital Publishing Institute (MDPI)},
keywords = {3D faces, 3d facial model, 3D facial models, 3D modeling, adaptation, adult, Article, Audience perception evaluation, benchmarking, controlled study, Cross-modal, Face generation, Facial modeling, facies, Feature extraction, feedback, feedback system, female, Geometry, High-fidelity, human, illumination, Immersive media, Lighting, male, movie, Neural radiance field, Neural Radiance Fields, perception, Quality control, Rendering (computer graphics), Semantics, sensor, Three dimensional computer graphics, Virtual production, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
2023
Jacoby, D.; Xu, D.; Ribas, W.; Xu, M.; Liu, T.; Jeyaraman, V.; Wei, M.; Blois, E. D.; Coady, Y.
Efficient Cloud Pipelines for Neural Radiance Fields Proceedings Article
In: Chakrabarti, S.; Paul, R. (Ed.): IEEE Annu. Ubiquitous Comput., Electron. Mob. Commun. Conf., UEMCON, pp. 114–119, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 9798350304138 (ISBN).
Abstract | Links | BibTeX | Tags: Azure, Change detection, Cloud analytics, Cloud computing, Cloud-computing, Cluster computing, Containerization, Creatives, Geo-spatial, Multi-views, Neural radiance field, Neural Radiance Fields, Pipelines, User interfaces, Virtual production, Vision communities, Windows operating system
@inproceedings{jacoby_efficient_2023,
title = {Efficient Cloud Pipelines for Neural Radiance Fields},
author = {D. Jacoby and D. Xu and W. Ribas and M. Xu and T. Liu and V. Jeyaraman and M. Wei and E. D. Blois and Y. Coady},
editor = {S. Chakrabarti and R. Paul},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179765347&doi=10.1109%2FUEMCON59035.2023.10316126&partnerID=40&md5=cb75c3398a28ac80a8bc8f35da278d50},
doi = {10.1109/UEMCON59035.2023.10316126},
isbn = {9798350304138 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {IEEE Annu. Ubiquitous Comput., Electron. Mob. Commun. Conf., UEMCON},
pages = {114–119},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Since their introduction in 2020, Neural Radiance Fields (NeRFs) have taken the computer vision community by storm. They provide a multi-view representation of a scene or object that is ideal for eXtended Reality (XR) applications and for creative endeavors such as virtual production, as well as change detection operations in geospatial analytics. The computational cost of these generative AI models is quite high, however, and the construction of cloud pipelines to generate NeRFs is neccesary to realize their potential in client applications. In this paper, we present pipelines on a high performance academic computing cluster and compare it with a pipeline implemented on Microsoft Azure. Along the way, we describe some uses of NeRFs in enabling novel user interaction scenarios. © 2023 Elsevier B.V., All rights reserved.},
keywords = {Azure, Change detection, Cloud analytics, Cloud computing, Cloud-computing, Cluster computing, Containerization, Creatives, Geo-spatial, Multi-views, Neural radiance field, Neural Radiance Fields, Pipelines, User interfaces, Virtual production, Vision communities, Windows operating system},
pubstate = {published},
tppubtype = {inproceedings}
}