AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Nygren, T.; Samuelsson, M.; Hansson, P. -O.; Efimova, E.; Bachelder, S.
In: International Journal of Artificial Intelligence in Education, 2025, ISSN: 15604306 (ISSN); 15604292 (ISSN), (Publisher: Springer).
Abstract | Links | BibTeX | Tags: AI-generated feedback, Controversial issue in social study education, Controversial issues in social studies education, Curricula, Domain knowledge, Economic and social effects, Expert systems, Generative AI, Human engineering, Knowledge engineering, Language Model, Large language model, large language models (LLMs), Mixed reality, Mixed reality simulation, Mixed reality simulation (MRS), Pedagogical content knowledge, Pedagogical content knowledge (PCK), Personnel training, Preservice teachers, Social studies education, Teacher training, Teacher training simulation, Teacher training simulations, Teaching, Training simulation
@article{nygren_ai_2025,
title = {AI Versus Human Feedback in Mixed Reality Simulations: Comparing LLM and Expert Mentoring in Preservice Teacher Education on Controversial Issues},
author = {T. Nygren and M. Samuelsson and P. -O. Hansson and E. Efimova and S. Bachelder},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007244772&doi=10.1007%2Fs40593-025-00484-8&partnerID=40&md5=3404a614af6fe4d4d2cb284060600e3c},
doi = {10.1007/s40593-025-00484-8},
issn = {15604306 (ISSN); 15604292 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {International Journal of Artificial Intelligence in Education},
abstract = {This study explores the potential role of AI-generated mentoring within simulated environments designed for teacher education, specifically focused on the challenges of teaching controversial issues. Using a mixed-methods approach, we empirically investigate the potential and challenges of AI-generated feedback compared to that provided by human experts when mentoring preservice teachers in the context of mixed reality simulations. Findings reveal that human experts offered more mixed and nuanced feedback than ChatGPT-4o and Perplexity, especially when identifying missed teaching opportunities and balancing classroom discussions. The AI models evaluated were publicly available pro versions of LLMs and were tested using detailed prompts and coding schemes aligned with educational theories. AI systems were not very good at identifying aspects of general, pedagogical or content knowledge based on Shulman’s theories but were still quite effective in generating feedback in line with human experts. The study highlights the promise of AI to enhance teacher training but underscores the importance of combining AI feedback with expert insights to address the complexities of real-world teaching. This research contributes to a growing understanding of AI's potential role and limitations in education. It suggests that, while AI can be valuable to scale mixed reality simulations, it should be carefully evaluated and balanced by human expertise in teacher education. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Springer},
keywords = {AI-generated feedback, Controversial issue in social study education, Controversial issues in social studies education, Curricula, Domain knowledge, Economic and social effects, Expert systems, Generative AI, Human engineering, Knowledge engineering, Language Model, Large language model, large language models (LLMs), Mixed reality, Mixed reality simulation, Mixed reality simulation (MRS), Pedagogical content knowledge, Pedagogical content knowledge (PCK), Personnel training, Preservice teachers, Social studies education, Teacher training, Teacher training simulation, Teacher training simulations, Teaching, Training simulation},
pubstate = {published},
tppubtype = {article}
}
Zhao, P.; Wei, X.
The Role of 3D Virtual Humans in Communication and Assisting Students' Learning in Transparent Display Environments: Perspectives of Pre-Service Teachers Proceedings Article
In: Chui, K. T.; Jaikaeo, C.; Niramitranon, J.; Kaewmanee, W.; Ng, K. -K.; Ongkunaruk, P. (Ed.): pp. 319–323, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 9798331595500 (ISBN).
Abstract | Links | BibTeX | Tags: 3D virtual human, Assistive technology, CDIO teaching model, Collaborative learning, Collaborative practices, Display environments, E-Learning, Educational Technology, Engineering education, feedback, Integration, Knowledge delivery, Knowledge transfer, Learning algorithms, Natural language processing systems, Preservice teachers, Psychology computing, Student learning, Students, Teaching, Teaching model, Transparent display environment, Transparent displays, Virtual Reality
@inproceedings{zhao_role_2025,
title = {The Role of 3D Virtual Humans in Communication and Assisting Students' Learning in Transparent Display Environments: Perspectives of Pre-Service Teachers},
author = {P. Zhao and X. Wei},
editor = {K. T. Chui and C. Jaikaeo and J. Niramitranon and W. Kaewmanee and K. -K. Ng and P. Ongkunaruk},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105015746241&doi=10.1109%2FISET65607.2025.00069&partnerID=40&md5=08c39b84fa6bd6ac13ddbed203d7b1d9},
doi = {10.1109/ISET65607.2025.00069},
isbn = {9798331595500 (ISBN)},
year = {2025},
date = {2025-01-01},
pages = {319–323},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {The integration of transparent display and 3D virtual human technologies into education is expanding rapidly; however, their systematic incorporation into the CDIO teaching model remains underexplored, particularly in supporting complex knowledge delivery and collaborative practice. This study developed an intelligent virtual teacher assistance system based on generative AI and conducted a teaching experiment combining transparent display and 3D virtual human technologies. Feedback was collected through focus group interviews with 24 pre-service teachers. Results show that the virtual human, through natural language and multimodal interaction, significantly enhanced classroom engagement and contextual understanding, while its real-time feedback and personalized guidance effectively supported CDIO-based collaborative learning. Nonetheless, challenges remain in contextual adaptability and emotional feedback accuracy. Accordingly, the study proposes a path for technical optimization through the integration of multimodal emotion recognition, adaptive instructional algorithms, and nonintrusive data collection, offering empirical and theoretical insights into educational technology integration within the CDIO framework and future intelligent learning tools. © 2025 Elsevier B.V., All rights reserved.},
keywords = {3D virtual human, Assistive technology, CDIO teaching model, Collaborative learning, Collaborative practices, Display environments, E-Learning, Educational Technology, Engineering education, feedback, Integration, Knowledge delivery, Knowledge transfer, Learning algorithms, Natural language processing systems, Preservice teachers, Psychology computing, Student learning, Students, Teaching, Teaching model, Transparent display environment, Transparent displays, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Hong, S.; Moon, J.; Eom, T.; Awoyemi, I. D.; Hwang, J.
In: Education Sciences, vol. 15, no. 8, 2025, ISSN: 22277102 (ISSN), (Publisher: Multidisciplinary Digital Publishing Institute (MDPI)).
Abstract | Links | BibTeX | Tags: Generative AI, Preservice teachers, simulation-based learning, teacher education, virtual reality simulation
@article{hong_generative_2025,
title = {Generative AI-Enhanced Virtual Reality Simulation for Pre-Service Teacher Education: A Mixed-Methods Analysis of Usability and Instructional Utility for Course Integration},
author = {S. Hong and J. Moon and T. Eom and I. D. Awoyemi and J. Hwang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105014401165&doi=10.3390%2Feducsci15080997&partnerID=40&md5=959944ad02f6047fd69e2e5bb964fbc3},
doi = {10.3390/educsci15080997},
issn = {22277102 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {Education Sciences},
volume = {15},
number = {8},
abstract = {Teacher education faces persistent challenges, including limited access to authentic field experiences and a disconnect between theoretical instruction and classroom practice. While virtual reality (VR) simulations offer an alternative, most are constrained by inflexible design and lack scalability, failing to mirror the complexity of real teaching environments. This study introduces TeacherGen@i, a generative AI (GenAI)-enhanced VR simulation designed to provide pre-service teachers with immersive, adaptive teaching practice through realistic GenAI agents. Using an explanatory case study with a mixed-methods approach, the study examines the simulation’s usability, design challenges, and instructional utility within a university-based teacher preparation course. Data sources included usability surveys and reflective journals, analyzed through thematic coding and computational linguistic analysis using LIWC. Findings suggest that TeacherGen@i facilitates meaningful development of teaching competencies such as instructional decision-making, classroom communication, and student engagement, while also identifying notable design limitations related to cognitive load, user interface design, and instructional scaffolding. This exploratory research offers preliminary insights into the integration of generative AI in teacher simulations and its potential to support responsive and scalable simulation-based learning environments. © 2025 Elsevier B.V., All rights reserved.},
note = {Publisher: Multidisciplinary Digital Publishing Institute (MDPI)},
keywords = {Generative AI, Preservice teachers, simulation-based learning, teacher education, virtual reality simulation},
pubstate = {published},
tppubtype = {article}
}