AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Wu, J.; Gan, W.; Chao, H. -C.; Yu, P. S.
Geospatial Big Data: Survey and Challenges Journal Article
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 17007–17020, 2024, ISSN: 19391404 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, artificial intelligence (AI), Behavioral Research, Big Data, Data challenges, Data Mining, Data surveys, Data visualization, Earth observation data, Environmental management, environmental protection, Geo-spatial, Geo-spatial analysis, Geo-spatial data, Geospatial big data, geospatial big data (GBD), geospatial data, GIS, Green products, Human behaviors, Knowledge graph, Knowledge graphs, satellite, sensor, spatial data, Sustainable development, urban planning
@article{wu_geospatial_2024,
title = {Geospatial Big Data: Survey and Challenges},
author = {J. Wu and W. Gan and H. -C. Chao and P. S. Yu},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200804056&doi=10.1109%2fJSTARS.2024.3438376&partnerID=40&md5=53ee1c9695b3f2e78d6b565ed47f7585},
doi = {10.1109/JSTARS.2024.3438376},
issn = {19391404 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
volume = {17},
pages = {17007–17020},
abstract = {In recent years, geospatial big data (GBD) has obtained attention across various disciplines, categorized into big Earth observation data and big human behavior data. Identifying geospatial patterns from GBD has been a vital research focus in the fields of urban management and environmental sustainability. This article reviews the evolution of GBD mining and its integration with advanced artificial intelligence techniques. GBD consists of data generated by satellites, sensors, mobile devices, and geographical information systems, and we categorize geospatial data based on different perspectives. We outline the process of GBD mining and demonstrate how it can be incorporated into a unified framework. In addition, we explore new technologies, such as large language models, the metaverse, and knowledge graphs, and how they could make GBD even more useful. We also share examples of GBD helping with city management and protecting the environment. Finally, we discuss the real challenges that come up when working with GBD, such as issues with data retrieval and security. Our goal is to give readers a clear view of where GBD mining stands today and where it might go next. © 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.},
keywords = {Artificial intelligence, artificial intelligence (AI), Behavioral Research, Big Data, Data challenges, Data Mining, Data surveys, Data visualization, Earth observation data, Environmental management, environmental protection, Geo-spatial, Geo-spatial analysis, Geo-spatial data, Geospatial big data, geospatial big data (GBD), geospatial data, GIS, Green products, Human behaviors, Knowledge graph, Knowledge graphs, satellite, sensor, spatial data, Sustainable development, urban planning},
pubstate = {published},
tppubtype = {article}
}
Shabanijou, M.; Sharma, V.; Ray, S.; Lu, R.; Xiong, P.
Large Language Model Empowered Spatio-Visual Queries for Extended Reality Environments Proceedings Article
In: W., Ding; C.-T., Lu; F., Wang; L., Di; K., Wu; J., Huan; R., Nambiar; J., Li; F., Ilievski; R., Baeza-Yates; X., Hu (Ed.): Proc. - IEEE Int. Conf. Big Data, BigData, pp. 5843–5846, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835036248-0 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, Digital elevation model, Emerging applications, Immersive environment, Language Model, Metaverses, Modeling languages, Natural language interfaces, Query languages, spatial data, Spatial queries, Structured Query Language, Technological advances, Users perspective, Virtual environments, Visual languages, Visual query
@inproceedings{shabanijou_large_2024,
title = {Large Language Model Empowered Spatio-Visual Queries for Extended Reality Environments},
author = {M. Shabanijou and V. Sharma and S. Ray and R. Lu and P. Xiong},
editor = {Ding W. and Lu C.-T. and Wang F. and Di L. and Wu K. and Huan J. and Nambiar R. and Li J. and Ilievski F. and Baeza-Yates R. and Hu X.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85218011140&doi=10.1109%2fBigData62323.2024.10825084&partnerID=40&md5=fdd78814b8e19830d1b8ecd4b33b0102},
doi = {10.1109/BigData62323.2024.10825084},
isbn = {979-835036248-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Conf. Big Data, BigData},
pages = {5843–5846},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {With the technological advances in creation and capture of 3D spatial data, new emerging applications are being developed. Digital Twins, metaverse and extended reality (XR) based immersive environments can be enriched by leveraging geocoded 3D spatial data. Unlike 2D spatial queries, queries involving 3D immersive environments need to take the query user's viewpoint into account. Spatio-visual queries return objects that are visible from the user's perspective.In this paper, we propose enhancing 3D spatio-visual queries with large language models (LLM). These kinds of queries allow a user to interact with the visible objects using a natural language interface. We have implemented a proof-of-concept prototype and conducted preliminary evaluation. Our results demonstrate the potential of truly interactive immersive environments. © 2024 IEEE.},
keywords = {3D modeling, Digital elevation model, Emerging applications, Immersive environment, Language Model, Metaverses, Modeling languages, Natural language interfaces, Query languages, spatial data, Spatial queries, Structured Query Language, Technological advances, Users perspective, Virtual environments, Visual languages, Visual query},
pubstate = {published},
tppubtype = {inproceedings}
}
Tang, Y.; Situ, J.; Huang, Y.
Beyond User Experience: Technical and Contextual Metrics for Large Language Models in Extended Reality Proceedings Article
In: UbiComp Companion - Companion ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., pp. 640–643, Association for Computing Machinery, Inc, 2024, ISBN: 979-840071058-2 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Computer simulation languages, Evaluation Metrics, Extended reality, Language Model, Large language model, large language models, Mixed reality, Modeling performance, Natural language processing systems, Physical world, Spatial computing, spatial data, user experience, Users' experiences, Virtual environments, Virtual Reality
@inproceedings{tang_beyond_2024,
title = {Beyond User Experience: Technical and Contextual Metrics for Large Language Models in Extended Reality},
author = {Y. Tang and J. Situ and Y. Huang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206203437&doi=10.1145%2f3675094.3678995&partnerID=40&md5=3fb337872b483a163bfbea038f1baffe},
doi = {10.1145/3675094.3678995},
isbn = {979-840071058-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {UbiComp Companion - Companion ACM Int. Jt. Conf. Pervasive Ubiquitous Comput.},
pages = {640–643},
publisher = {Association for Computing Machinery, Inc},
abstract = {Spatial Computing involves interacting with the physical world through spatial data manipulation, closely linked with Extended Reality (XR), which includes Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). Large Language Models (LLMs) significantly enhance XR applications by improving user interactions through natural language understanding and content generation. Typical evaluations of these applications focus on user experience (UX) metrics, such as task performance, user satisfaction, and psychological assessments, but often neglect the technical performance of the LLMs themselves. This paper identifies significant gaps in current evaluation practices for LLMs within XR environments, attributing them to the novelty of the field, the complexity of spatial contexts, and the multimodal nature of interactions in XR. To address these gaps, the paper proposes specific metrics tailored to evaluate LLM performance in XR contexts, including spatial contextual awareness, coherence, proactivity, multimodal integration, hallucination, and question-answering accuracy. These proposed metrics aim to complement existing UX evaluations, providing a comprehensive assessment framework that captures both the technical and user-centric aspects of LLM performance in XR applications. The conclusion underscores the necessity for a dual-focused approach that combines technical and UX metrics to ensure effective and user-friendly LLM-integrated XR systems. © 2024 Copyright held by the owner/author(s).},
keywords = {Augmented Reality, Computer simulation languages, Evaluation Metrics, Extended reality, Language Model, Large language model, large language models, Mixed reality, Modeling performance, Natural language processing systems, Physical world, Spatial computing, spatial data, user experience, Users' experiences, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
2013
Scianna, A.
Experimental Studies for the Definition of 3D Geospatial Web Services Journal Article
In: Applied Geomatics, vol. 5, no. 1, pp. 59–71, 2013.
Abstract | Links | BibTeX | Tags: database, experimental study, GIS, software, spatial data, World Wide Web
@article{sciannaExperimentalStudiesDefinition2013,
title = {Experimental Studies for the Definition of 3D Geospatial Web Services},
author = { A. Scianna},
doi = {10.1007/s12518-012-0096-y},
year = {2013},
date = {2013-01-01},
journal = {Applied Geomatics},
volume = {5},
number = {1},
pages = {59--71},
publisher = {Springer Verlag},
abstract = {The importance of geospatial information delivery, across Internet, is increasing more and more. But if, some years ago, visualizing 2D geographic information inside Internet browsers, extracted by HTTP servers supported by map servers (WebGIS applications) was satisfying, today users would acquire 3D information especially in some case or sectors as urban planning, environmental control, real estate management, cadastral applications, civil protection, and security. In these cases, availability of 3D information could be very valuable. Meanwhile, other needs came out such as the possibility to extract information with all Geographic Information Systems (GIS) software, in a transparent way for users, independently from the data format server-side, acquiring data from standardized 2D web services, made available by WebGIS servers; all this in the respect of principles of interoperability that is at the basis of the constructions of SDIs and one of the goals of Inspire European Directive. But behind this need, there exist many important aspects that today are only partially resolved as methods to save 3D information in geospatial database, the definition of topology relationships able to satisfy requirement of 3D GIS applications, the definition of 3D geospatial web services,. All these aspects are interconnected and are also dependent from some other aspects (i.e., the standardization of 3D geographic data models). The experimentation, here illustrated, deals with these issues, trying to define a 3D web service in order to visualize and query, by Internet Browsers, a 3D model of the built environment. Today, there exist few 3D data models (such as CityGML) whose standard definition process is also evolving. Often, these models are built with the main goal of 3D visualization even if at different level of detail. But some sectors require a better use of geographic 3D information such as querying it at different levels of detail (such as at a level regarding the different building parts defined through their attributes) and 3D processing. These are the environmental control, location-based services, cadastre, civil protection, security, archaeology, etc. For these reasons, it is strategic to study and propose new approaches and methods for structuring 3D geospatial information and for sharing 3D geospatial information on Internet granting an open access to it, also respecting interoperability issues. Based on a project named "Interoperability and cooperative management of geographic, dynamic, multidimensional and distributed data with Free and Open Source GIS: Management and use of distributed 3D data by open source WebGIS software" funded by Italian Ministry of Instruction, University and Research as Program of Relevant National Interest (2007), a part of the research process is here illustrated. The research deals with the design of 3D Web Feature Service and the development of a system mainly based on Java applications both client (Java applet) and server-side (Java servlet) and 3D geospatial database with topological structure compliant to a conceptual geospatial data model of an urban environment. The server-side system is capable to deploy a 3D Web Feature Service, which allows the extraction of GML 3D and the graphical browsing of urban model in 3D through the Java applet. textcopyright 2012 Societ`a Italiana di Fotogrammetria e Topografia (SIFET).},
keywords = {database, experimental study, GIS, software, spatial data, World Wide Web},
pubstate = {published},
tppubtype = {article}
}
Scianna, A.
Experimental studies for the definition of 3D geospatial web services Journal Article
In: Applied Geomatics, vol. 5, no. 1, pp. 59–71, 2013, (Number: 1 Publisher: Springer Verlag).
Abstract | Links | BibTeX | Tags: database, experimental study, GIS, software, spatial data, World Wide Web
@article{scianna_experimental_2013,
title = {Experimental studies for the definition of 3D geospatial web services},
author = {A. Scianna},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874073932&doi=10.1007%2fs12518-012-0096-y&partnerID=40&md5=1bd89b168b9a0781e1b90c41c571b35d},
doi = {10.1007/s12518-012-0096-y},
year = {2013},
date = {2013-01-01},
journal = {Applied Geomatics},
volume = {5},
number = {1},
pages = {59–71},
abstract = {The importance of geospatial information delivery, across Internet, is increasing more and more. But if, some years ago, visualizing 2D geographic information inside Internet browsers, extracted by HTTP servers supported by map servers (WebGIS applications) was satisfying, today users would acquire 3D information especially in some case or sectors as urban planning, environmental control, real estate management, cadastral applications, civil protection, and security. In these cases, availability of 3D information could be very valuable. Meanwhile, other needs came out such as the possibility to extract information with all Geographic Information Systems (GIS) software, in a transparent way for users, independently from the data format server-side, acquiring data from standardized 2D web services, made available by WebGIS servers; all this in the respect of principles of interoperability that is at the basis of the constructions of SDIs and one of the goals of Inspire European Directive. But behind this need, there exist many important aspects that today are only partially resolved as methods to save 3D information in geospatial database, the definition of topology relationships able to satisfy requirement of 3D GIS applications, the definition of 3D geospatial web services,. All these aspects are interconnected and are also dependent from some other aspects (i.e., the standardization of 3D geographic data models). The experimentation, here illustrated, deals with these issues, trying to define a 3D web service in order to visualize and query, by Internet Browsers, a 3D model of the built environment. Today, there exist few 3D data models (such as CityGML) whose standard definition process is also evolving. Often, these models are built with the main goal of 3D visualization even if at different level of detail. But some sectors require a better use of geographic 3D information such as querying it at different levels of detail (such as at a level regarding the different building parts defined through their attributes) and 3D processing. These are the environmental control, location-based services, cadastre, civil protection, security, archaeology, etc. For these reasons, it is strategic to study and propose new approaches and methods for structuring 3D geospatial information and for sharing 3D geospatial information on Internet granting an open access to it, also respecting interoperability issues. Based on a project named "Interoperability and cooperative management of geographic, dynamic, multidimensional and distributed data with Free and Open Source GIS: Management and use of distributed 3D data by open source WebGIS software" funded by Italian Ministry of Instruction, University and Research as Program of Relevant National Interest (2007), a part of the research process is here illustrated. The research deals with the design of 3D Web Feature Service and the development of a system mainly based on Java applications both client (Java applet) and server-side (Java servlet) and 3D geospatial database with topological structure compliant to a conceptual geospatial data model of an urban environment. The server-side system is capable to deploy a 3D Web Feature Service, which allows the extraction of GML 3D and the graphical browsing of urban model in 3D through the Java applet. © 2012 Società Italiana di Fotogrammetria e Topografia (SIFET).},
note = {Number: 1
Publisher: Springer Verlag},
keywords = {database, experimental study, GIS, software, spatial data, World Wide Web},
pubstate = {published},
tppubtype = {article}
}