AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Kapadia, N.; Gokhale, S.; Nepomuceno, A.; Cheng, W.; Bothwell, S.; Mathews, M.; Shallat, J. S.; Schultz, C.; Gupta, A.
Evaluation of Large Language Model Generated Dialogues for an AI Based VR Nurse Training Simulator Proceedings Article
In: J.Y.C., Chen; G., Fragomeni (Ed.): Lect. Notes Comput. Sci., pp. 200–212, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303161040-0 (ISBN).
Abstract | Links | BibTeX | Tags: Bard, ChatGPT, ClaudeAI, Clinical research, Computational Linguistics, Dialogue Generation, Dialogue generations, Education computing, Extended reality, Health care education, Healthcare Education, Language Model, Language processing, Large language model, large language models, Natural Language Processing, Natural language processing systems, Natural languages, Nurse Training Simulation, Nursing, Patient avatar, Patient Avatars, Semantics, Students, Training simulation, Virtual Reality
@inproceedings{kapadia_evaluation_2024,
title = {Evaluation of Large Language Model Generated Dialogues for an AI Based VR Nurse Training Simulator},
author = {N. Kapadia and S. Gokhale and A. Nepomuceno and W. Cheng and S. Bothwell and M. Mathews and J. S. Shallat and C. Schultz and A. Gupta},
editor = {Chen J.Y.C. and Fragomeni G.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196200653&doi=10.1007%2f978-3-031-61041-7_13&partnerID=40&md5=8890a8d0c289fdf6e7ab82e105249097},
doi = {10.1007/978-3-031-61041-7_13},
isbn = {03029743 (ISSN); 978-303161040-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {14706 LNCS},
pages = {200–212},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {This paper explores the efficacy of Large Language Models (LLMs) in generating dialogues for patient avatars in Virtual Reality (VR) nurse training simulators. With the integration of technology in healthcare education evolving rapidly, the potential of NLP to enhance nurse training through realistic patient interactions presents a significant opportunity. Our study introduces a novel LLM-based dialogue generation system, leveraging models such as ChatGPT, GoogleBard, and ClaudeAI. We detail the development of our script generation system, which was a collaborative endeavor involving nurses, technical artists, and developers. The system, tested on the Meta Quest 2 VR headset, integrates complex dialogues created through a synthesis of clinical expertise and advanced NLP, aimed at simulating real-world nursing scenarios. Through a comprehensive evaluation involving lexical and semantic similarity tests compared to clinical expert-generated scripts, we assess the potential of LLMs as suitable alternatives for script generation. The findings aim to contribute to the development of a more interactive and effective VR nurse training simulator, enhancing communication skills among nursing students for improved patient care outcomes. This research underscores the importance of advanced NLP applications in healthcare education, offering insights into the practicality and limitations of employing LLMs in clinical training environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Bard, ChatGPT, ClaudeAI, Clinical research, Computational Linguistics, Dialogue Generation, Dialogue generations, Education computing, Extended reality, Health care education, Healthcare Education, Language Model, Language processing, Large language model, large language models, Natural Language Processing, Natural language processing systems, Natural languages, Nurse Training Simulation, Nursing, Patient avatar, Patient Avatars, Semantics, Students, Training simulation, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Scott, A. J. S.; McCuaig, F.; Lim, V.; Watkins, W.; Wang, J.; Strachan, G.
Revolutionizing Nurse Practitioner Training: Integrating Virtual Reality and Large Language Models for Enhanced Clinical Education Proceedings Article
In: G., Strudwick; N.R., Hardiker; G., Rees; R., Cook; R., Cook; Y.J., Lee (Ed.): Stud. Health Technol. Informatics, pp. 671–672, IOS Press BV, 2024, ISBN: 09269630 (ISSN); 978-164368527-4 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D models, 3d-modeling, adult, anamnesis, clinical decision making, clinical education, Clinical Simulation, Computational Linguistics, computer interface, Computer-Assisted Instruction, conference paper, Curriculum, Decision making, E-Learning, Education, Health care education, Healthcare Education, human, Humans, Language Model, Large language model, large language models, Mesh generation, Model animations, Modeling languages, nurse practitioner, Nurse Practitioners, Nursing, nursing education, nursing student, OSCE preparation, procedures, simulation, Teaching, therapy, Training, Training program, User-Computer Interface, Virtual Reality, Virtual reality training
@inproceedings{scott_revolutionizing_2024,
title = {Revolutionizing Nurse Practitioner Training: Integrating Virtual Reality and Large Language Models for Enhanced Clinical Education},
author = {A. J. S. Scott and F. McCuaig and V. Lim and W. Watkins and J. Wang and G. Strachan},
editor = {Strudwick G. and Hardiker N.R. and Rees G. and Cook R. and Cook R. and Lee Y.J.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199593781&doi=10.3233%2fSHTI240272&partnerID=40&md5=90c7bd43ba978f942723e6cf1983ffb3},
doi = {10.3233/SHTI240272},
isbn = {09269630 (ISSN); 978-164368527-4 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Stud. Health Technol. Informatics},
volume = {315},
pages = {671–672},
publisher = {IOS Press BV},
abstract = {This project introduces an innovative virtual reality (VR) training program for student Nurse Practitioners, incorporating advanced 3D modeling, animation, and Large Language Models (LLMs). Designed to simulate realistic patient interactions, the program aims to improve communication, history taking, and clinical decision-making skills in a controlled, authentic setting. This abstract outlines the methods, results, and potential impact of this cutting-edge educational tool on nursing education. © 2024 The Authors.},
keywords = {3D modeling, 3D models, 3d-modeling, adult, anamnesis, clinical decision making, clinical education, Clinical Simulation, Computational Linguistics, computer interface, Computer-Assisted Instruction, conference paper, Curriculum, Decision making, E-Learning, Education, Health care education, Healthcare Education, human, Humans, Language Model, Large language model, large language models, Mesh generation, Model animations, Modeling languages, nurse practitioner, Nurse Practitioners, Nursing, nursing education, nursing student, OSCE preparation, procedures, simulation, Teaching, therapy, Training, Training program, User-Computer Interface, Virtual Reality, Virtual reality training},
pubstate = {published},
tppubtype = {inproceedings}
}
Seo, W. J.; Kim, M.
Utilization of Generative Artificial Intelligence in Nursing Education: A Topic Modeling Analysis Journal Article
In: Education Sciences, vol. 14, no. 11, 2024, ISSN: 22277102 (ISSN).
Abstract | Links | BibTeX | Tags: generative artificial intelligence, Nursing, nursing education, nursing education research, patients, Students, topic modeling
@article{seo_utilization_2024,
title = {Utilization of Generative Artificial Intelligence in Nursing Education: A Topic Modeling Analysis},
author = {W. J. Seo and M. Kim},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85210378858&doi=10.3390%2feducsci14111234&partnerID=40&md5=417127fbeb94cc40d893efe11a149ad3},
doi = {10.3390/educsci14111234},
issn = {22277102 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Education Sciences},
volume = {14},
number = {11},
abstract = {The advent of artificial intelligence (AI) has prompted the introduction of novel digital technologies, including mobile learning and metaverse learning, into nursing students’ learning environments. This study used text network and topic modeling analyses to identify the research trends in generative AI in nursing education for students and patients in schools, hospitals, and community settings. Additionally, an ego network analysis using strengths, weaknesses, opportunities, and threats (SWOT) words was performed to develop a comprehensive understanding of factors that impact the integration of generative AI in nursing education. The literature was searched from five databases published until July 2024. After excluding studies whose abstracts were not available and removing duplicates, 139 articles were identified. The seven derived topics were labeled as usability in future scientific applications, application and integration of technology, simulation education, utility in image and text analysis, performance in exams, utility in assignments, and patient education. The ego network analysis focusing on the SWOT keywords revealed “healthcare”, “use”, and “risk” were common keywords. The limited emphasis on “threats”, “strengths”, and “weaknesses” compared to “opportunities” in the SWOT analysis indicated that these areas are relatively underexplored in nursing education. To integrate generative AI technology into education such as simulation training, teaching activities, and the development of personalized learning, it is necessary to identify relevant internal strengths and weaknesses of schools, hospitals, and communities that apply it, and plan practical application strategies aligned with clear institutional guidelines. © 2024 by the authors.},
keywords = {generative artificial intelligence, Nursing, nursing education, nursing education research, patients, Students, topic modeling},
pubstate = {published},
tppubtype = {article}
}