AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Samson, J.; Lameras, P.; Taylor, N.; Kneafsey, R.
Fostering a Co-creation Process for the Development of an Extended Reality Healthcare Education Resource Proceedings Article
In: M.E., Auer; T., Tsiatsos (Ed.): Lect. Notes Networks Syst., pp. 205–212, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 23673370 (ISSN); 978-303156074-3 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Co-creation, Creation process, Diagnosis, Education computing, Education resource, Extended reality, Health care education, Hospitals, Immersive, Inter professionals, Interprofessional Healthcare Education, Software products, Students, Virtual patients
@inproceedings{samson_fostering_2024,
title = {Fostering a Co-creation Process for the Development of an Extended Reality Healthcare Education Resource},
author = {J. Samson and P. Lameras and N. Taylor and R. Kneafsey},
editor = {Auer M.E. and Tsiatsos T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189759614&doi=10.1007%2f978-3-031-56075-0_20&partnerID=40&md5=6ae832882a2e224094c1beb81c925333},
doi = {10.1007/978-3-031-56075-0_20},
isbn = {23673370 (ISSN); 978-303156074-3 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Networks Syst.},
volume = {937 LNNS},
pages = {205–212},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The aim of this research is to create an immersive healthcare education resource using an extended reality (XR) platform. This platform leverages an existing software product, incorporating virtual patients with conversational capabilities driven by artificial intelligence (AI). The initial stage produced an early prototype focused on assessing an elderly virtual patient experiencing frailty. This scenario encompasses the hospital admission to post-discharge care at home, involving various healthcare professionals such as paramedics, emergency clinicians, diagnostic radiographers, geriatricians, physiotherapists, occupational therapists, nurses, operating department practitioners, dietitians, and social workers. The plan moving forward is to refine and expand this prototype through a co-creation with diverse stakeholders. The refinement process will include the introduction of updated scripts into the standard AI model. Furthermore, these scripts will be tested against a new hybrid model that combines generative AI. Ultimately, this resource will be co-designed to create a learning activity tailored for occupational therapy and physiotherapy students. This activity will undergo testing with a cohort of students, and the outcomes of this research are expected to inform the future development of interprofessional virtual simulated placements (VSPs). These placements will complement traditional clinical learning experiences, offering students an immersive environment to enhance their skills and knowledge in the healthcare field. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Artificial intelligence, Co-creation, Creation process, Diagnosis, Education computing, Education resource, Extended reality, Health care education, Hospitals, Immersive, Inter professionals, Interprofessional Healthcare Education, Software products, Students, Virtual patients},
pubstate = {published},
tppubtype = {inproceedings}
}
Kapadia, N.; Gokhale, S.; Nepomuceno, A.; Cheng, W.; Bothwell, S.; Mathews, M.; Shallat, J. S.; Schultz, C.; Gupta, A.
Evaluation of Large Language Model Generated Dialogues for an AI Based VR Nurse Training Simulator Proceedings Article
In: J.Y.C., Chen; G., Fragomeni (Ed.): Lect. Notes Comput. Sci., pp. 200–212, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303161040-0 (ISBN).
Abstract | Links | BibTeX | Tags: Bard, ChatGPT, ClaudeAI, Clinical research, Computational Linguistics, Dialogue Generation, Dialogue generations, Education computing, Extended reality, Health care education, Healthcare Education, Language Model, Language processing, Large language model, large language models, Natural Language Processing, Natural language processing systems, Natural languages, Nurse Training Simulation, Nursing, Patient avatar, Patient Avatars, Semantics, Students, Training simulation, Virtual Reality
@inproceedings{kapadia_evaluation_2024,
title = {Evaluation of Large Language Model Generated Dialogues for an AI Based VR Nurse Training Simulator},
author = {N. Kapadia and S. Gokhale and A. Nepomuceno and W. Cheng and S. Bothwell and M. Mathews and J. S. Shallat and C. Schultz and A. Gupta},
editor = {Chen J.Y.C. and Fragomeni G.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196200653&doi=10.1007%2f978-3-031-61041-7_13&partnerID=40&md5=8890a8d0c289fdf6e7ab82e105249097},
doi = {10.1007/978-3-031-61041-7_13},
isbn = {03029743 (ISSN); 978-303161040-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {14706 LNCS},
pages = {200–212},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {This paper explores the efficacy of Large Language Models (LLMs) in generating dialogues for patient avatars in Virtual Reality (VR) nurse training simulators. With the integration of technology in healthcare education evolving rapidly, the potential of NLP to enhance nurse training through realistic patient interactions presents a significant opportunity. Our study introduces a novel LLM-based dialogue generation system, leveraging models such as ChatGPT, GoogleBard, and ClaudeAI. We detail the development of our script generation system, which was a collaborative endeavor involving nurses, technical artists, and developers. The system, tested on the Meta Quest 2 VR headset, integrates complex dialogues created through a synthesis of clinical expertise and advanced NLP, aimed at simulating real-world nursing scenarios. Through a comprehensive evaluation involving lexical and semantic similarity tests compared to clinical expert-generated scripts, we assess the potential of LLMs as suitable alternatives for script generation. The findings aim to contribute to the development of a more interactive and effective VR nurse training simulator, enhancing communication skills among nursing students for improved patient care outcomes. This research underscores the importance of advanced NLP applications in healthcare education, offering insights into the practicality and limitations of employing LLMs in clinical training environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Bard, ChatGPT, ClaudeAI, Clinical research, Computational Linguistics, Dialogue Generation, Dialogue generations, Education computing, Extended reality, Health care education, Healthcare Education, Language Model, Language processing, Large language model, large language models, Natural Language Processing, Natural language processing systems, Natural languages, Nurse Training Simulation, Nursing, Patient avatar, Patient Avatars, Semantics, Students, Training simulation, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Scott, A. J. S.; McCuaig, F.; Lim, V.; Watkins, W.; Wang, J.; Strachan, G.
Revolutionizing Nurse Practitioner Training: Integrating Virtual Reality and Large Language Models for Enhanced Clinical Education Proceedings Article
In: G., Strudwick; N.R., Hardiker; G., Rees; R., Cook; R., Cook; Y.J., Lee (Ed.): Stud. Health Technol. Informatics, pp. 671–672, IOS Press BV, 2024, ISBN: 09269630 (ISSN); 978-164368527-4 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, 3D models, 3d-modeling, adult, anamnesis, clinical decision making, clinical education, Clinical Simulation, Computational Linguistics, computer interface, Computer-Assisted Instruction, conference paper, Curriculum, Decision making, E-Learning, Education, Health care education, Healthcare Education, human, Humans, Language Model, Large language model, large language models, Mesh generation, Model animations, Modeling languages, nurse practitioner, Nurse Practitioners, Nursing, nursing education, nursing student, OSCE preparation, procedures, simulation, Teaching, therapy, Training, Training program, User-Computer Interface, Virtual Reality, Virtual reality training
@inproceedings{scott_revolutionizing_2024,
title = {Revolutionizing Nurse Practitioner Training: Integrating Virtual Reality and Large Language Models for Enhanced Clinical Education},
author = {A. J. S. Scott and F. McCuaig and V. Lim and W. Watkins and J. Wang and G. Strachan},
editor = {Strudwick G. and Hardiker N.R. and Rees G. and Cook R. and Cook R. and Lee Y.J.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199593781&doi=10.3233%2fSHTI240272&partnerID=40&md5=90c7bd43ba978f942723e6cf1983ffb3},
doi = {10.3233/SHTI240272},
isbn = {09269630 (ISSN); 978-164368527-4 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Stud. Health Technol. Informatics},
volume = {315},
pages = {671–672},
publisher = {IOS Press BV},
abstract = {This project introduces an innovative virtual reality (VR) training program for student Nurse Practitioners, incorporating advanced 3D modeling, animation, and Large Language Models (LLMs). Designed to simulate realistic patient interactions, the program aims to improve communication, history taking, and clinical decision-making skills in a controlled, authentic setting. This abstract outlines the methods, results, and potential impact of this cutting-edge educational tool on nursing education. © 2024 The Authors.},
keywords = {3D modeling, 3D models, 3d-modeling, adult, anamnesis, clinical decision making, clinical education, Clinical Simulation, Computational Linguistics, computer interface, Computer-Assisted Instruction, conference paper, Curriculum, Decision making, E-Learning, Education, Health care education, Healthcare Education, human, Humans, Language Model, Large language model, large language models, Mesh generation, Model animations, Modeling languages, nurse practitioner, Nurse Practitioners, Nursing, nursing education, nursing student, OSCE preparation, procedures, simulation, Teaching, therapy, Training, Training program, User-Computer Interface, Virtual Reality, Virtual reality training},
pubstate = {published},
tppubtype = {inproceedings}
}