AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Gatti, E.; Giunchi, D.; Numan, N.; Steed, A.
Around the Virtual Campfire: Early UX Insights into AI-Generated Stories in VR Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 136–141, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833152157-8 (ISBN).
Abstract | Links | BibTeX | Tags: Generative AI, Images synthesis, Immersive, Interactive Environments, Language Model, Large language model, Storytelling, User input, User study, Users' experiences, Virtual environments, VR
@inproceedings{gatti_around_2025,
title = {Around the Virtual Campfire: Early UX Insights into AI-Generated Stories in VR},
author = {E. Gatti and D. Giunchi and N. Numan and A. Steed},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000263662&doi=10.1109%2fAIxVR63409.2025.00027&partnerID=40&md5=cd804d892d45554e936d0221508b3447},
doi = {10.1109/AIxVR63409.2025.00027},
isbn = {979-833152157-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {136–141},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Virtual Reality (VR) presents an immersive platform for storytelling, allowing narratives to unfold in highly engaging, interactive environments. Leveraging AI capabilities and image synthesis offers new possibilities for creating scalable, generative VR content. In this work, we use an LLM-driven VR storytelling platform to explore how AI-generated visuals and narrative elements impact the user experience in VR storytelling. Previously, we presented AIsop, a system to integrate LLM-generated text and images and TTS audio into a storytelling experience, where the narrative unfolds based on user input. In this paper, we present two user studies focusing on how AI-generated visuals influence narrative perception and the overall VR experience. Our findings highlight the positive impact of AI-generated pictorial content on the storytelling experience, highlighting areas for enhancement and further research in interactive narrative design. © 2025 IEEE.},
keywords = {Generative AI, Images synthesis, Immersive, Interactive Environments, Language Model, Large language model, Storytelling, User input, User study, Users' experiences, Virtual environments, VR},
pubstate = {published},
tppubtype = {inproceedings}
}
Zhou, J.; Weber, R.; Wen, E.; Lottridge, D.
Real-Time Full-body Interaction with AI Dance Models: Responsiveness to Contemporary Dance Proceedings Article
In: Int Conf Intell User Interfaces Proc IUI, pp. 1177–1187, Association for Computing Machinery, 2025, ISBN: 979-840071306-4 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, Chatbots, Computer interaction, Deep learning, Deep-Learning Dance Model, Design of Human-Computer Interaction, Digital elevation model, Generative AI, Input output programs, Input sequence, Interactivity, Motion capture, Motion tracking, Movement analysis, Output sequences, Problem oriented languages, Real- time, Text mining, Three dimensional computer graphics, User input, Virtual environments, Virtual Reality
@inproceedings{zhou_real-time_2025,
title = {Real-Time Full-body Interaction with AI Dance Models: Responsiveness to Contemporary Dance},
author = {J. Zhou and R. Weber and E. Wen and D. Lottridge},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001922427&doi=10.1145%2f3708359.3712077&partnerID=40&md5=cea9213198220480b80b7a4840d26ccc},
doi = {10.1145/3708359.3712077},
isbn = {979-840071306-4 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Int Conf Intell User Interfaces Proc IUI},
pages = {1177–1187},
publisher = {Association for Computing Machinery},
abstract = {Interactive AI chatbots put the power of Large-Language Models (LLMs) into people's hands; it is this interactivity that fueled explosive worldwide influence. In the generative dance space, however, there are few deep-learning-based generative dance models built with interactivity in mind. The release of the AIST++ dance dataset in 2021 led to an uptick of capabilities in generative dance models. Whether these models could be adapted to support interactivity and how well this approach will work is not known. In this study, we explore the capabilities of existing generative dance models for motion-to-motion synthesis on real-time, full-body motion-captured contemporary dance data. We identify an existing model that we adapted to support interactivity: the Bailando++ model, which is trained on the AIST++ dataset and was modified to take music and a motion sequence as input parameters in an interactive loop. We worked with two professional contemporary choreographers and dancers to record and curate a diverse set of 203 motion-captured dance sequences as a set of "user inputs"captured through the Optitrack high-precision motion capture 3D tracking system. We extracted 17 quantitative movement features from the motion data using the well-established Laban Movement Analysis theory, which allowed for quantitative comparisons of inter-movement correlations, which we used for clustering input data and comparing input and output sequences. A total of 10 pieces of music were used to generate a variety of outputs using the adapted Bailando++ model. We found that, on average, the generated output motion achieved only moderate correlations to the user input, with some exceptions of movement and music pairs achieving high correlation. The high-correlation generated output sequences were deemed responsive and relevant co-creations in relation to the input sequences. We discuss implications for interactive generative dance agents, where the use of 3D joint coordinate data should be used over SMPL parameters for ease of real-time generation, and how the use of Laban Movement Analysis could be used to extract useful features and fine-tune deep-learning models. © 2025 Copyright held by the owner/author(s).},
keywords = {3D modeling, Chatbots, Computer interaction, Deep learning, Deep-Learning Dance Model, Design of Human-Computer Interaction, Digital elevation model, Generative AI, Input output programs, Input sequence, Interactivity, Motion capture, Motion tracking, Movement analysis, Output sequences, Problem oriented languages, Real- time, Text mining, Three dimensional computer graphics, User input, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}