AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Buldu, K. B.; Özdel, S.; Lau, K. H. Carrie; Wang, M.; Saad, D.; Schönborn, S.; Boch, A.; Kasneci, E.; Bozkir, E.
CUIfy the XR: An Open-Source Package to Embed LLM-Powered Conversational Agents in XR Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 192–197, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833152157-8 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Computational Linguistics, Conversational user interface, conversational user interfaces, Extended reality, Head-mounted-displays, Helmet mounted displays, Language Model, Large language model, large language models, Non-player character, non-player characters, Open source software, Personnel training, Problem oriented languages, Speech models, Speech-based interaction, Text to speech, Unity, Virtual environments, Virtual Reality
@inproceedings{buldu_cuify_2025,
title = {CUIfy the XR: An Open-Source Package to Embed LLM-Powered Conversational Agents in XR},
author = {K. B. Buldu and S. Özdel and K. H. Carrie Lau and M. Wang and D. Saad and S. Schönborn and A. Boch and E. Kasneci and E. Bozkir},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000229165&doi=10.1109%2fAIxVR63409.2025.00037&partnerID=40&md5=837b0e3425d2e5a9358bbe6c8ecb5754},
doi = {10.1109/AIxVR63409.2025.00037},
isbn = {979-833152157-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {192–197},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Recent developments in computer graphics, machine learning, and sensor technologies enable numerous opportunities for extended reality (XR) setups for everyday life, from skills training to entertainment. With large corporations offering affordable consumer-grade head-mounted displays (HMDs), XR will likely become pervasive, and HMDs will develop as personal devices like smartphones and tablets. However, having intelligent spaces and naturalistic interactions in XR is as important as tech-nological advances so that users grow their engagement in virtual and augmented spaces. To this end, large language model (LLM)-powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR. This paper provides the community with an open-source, customizable, extendable, and privacy-aware Unity package, CUIfy, that facili-tates speech-based NPC-user interaction with widely used LLMs, STT, and TTS models. Our package also supports multiple LLM-powered NPCs per environment and minimizes latency between different computational models through streaming to achieve us-able interactions between users and NPCs. We publish our source code in the following repository: https://gitlab.lrz.de/hctl/cuify © 2025 IEEE.},
keywords = {Augmented Reality, Computational Linguistics, Conversational user interface, conversational user interfaces, Extended reality, Head-mounted-displays, Helmet mounted displays, Language Model, Large language model, large language models, Non-player character, non-player characters, Open source software, Personnel training, Problem oriented languages, Speech models, Speech-based interaction, Text to speech, Unity, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Geetha, S.; Aditya, G.; Reddy, M. Chetan; Nischith, G.
Human Interaction in Virtual and Mixed Reality Through Hand Tracking Proceedings Article
In: Proc. CONECCT - IEEE Int. Conf. Electron., Comput. Commun. Technol., Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835038592-2 (ISBN).
Abstract | Links | BibTeX | Tags: Computer interaction, Computer simulation languages, Daily lives, Digital elevation model, Hand gesture, hand tracking, Hand-tracking, human-computer interaction, Humaninteraction, Interaction dynamics, Mixed reality, Unity, User friendly interface, User interfaces, Virtual environments, Virtual Reality, Virtual spaces
@inproceedings{geetha_human_2024,
title = {Human Interaction in Virtual and Mixed Reality Through Hand Tracking},
author = {S. Geetha and G. Aditya and M. Chetan Reddy and G. Nischith},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205768661&doi=10.1109%2fCONECCT62155.2024.10677239&partnerID=40&md5=173e590ca9a1e30b760d05af562f311a},
doi = {10.1109/CONECCT62155.2024.10677239},
isbn = {979-835038592-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. CONECCT - IEEE Int. Conf. Electron., Comput. Commun. Technol.},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This paper explores the potential and possibilities of hand tracking in virtual reality (VR) and mixed reality (MR), focusing on its role in human interaction dynamics. An application was designed in Unity leveraging the XR Interaction toolkit, within which various items across three important domains: daily life, education, and recreation, were crafted to demonstrate the versatility of hand tracking along with hand gesture-based shortcuts for interaction. Integration of elements in MR ensures that users can seamlessly enjoy virtual experiences while remaining connected to their physical surroundings. Precise hand tracking enables effortless interaction with the virtual space, enhancing presence and control with a user-friendly interface. Additionally, the paper explores the effectiveness of integrating hand tracking into education and training scenarios. A computer assembly simulation was created to demonstrate this, featuring component inspection and zoom capabilities along with a large language model (LLM) integrated with hand gestures to provide for interaction capabilities. © 2024 IEEE.},
keywords = {Computer interaction, Computer simulation languages, Daily lives, Digital elevation model, Hand gesture, hand tracking, Hand-tracking, human-computer interaction, Humaninteraction, Interaction dynamics, Mixed reality, Unity, User friendly interface, User interfaces, Virtual environments, Virtual Reality, Virtual spaces},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Si, J.; Yang, S.; Kim, D.; Kim, S.
Metaverse Interview Room Creation With Virtual Interviewer Generation Using Diffusion Model Proceedings Article
In: Proc. IEEE Asia-Pacific Conf. Comput. Sci. Data Eng., CSDE, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 979-835034107-2 (ISBN).
Abstract | Links | BibTeX | Tags: Changing trends, Cutting edges, Diffusion, Diffusion Model, Generative AI, Hiring process, Interview skills, It focus, Metaverse, Metaverses, Unity, Virtual Interview, Virtual Reality
@inproceedings{si_metaverse_2023,
title = {Metaverse Interview Room Creation With Virtual Interviewer Generation Using Diffusion Model},
author = {J. Si and S. Yang and D. Kim and S. Kim},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190586380&doi=10.1109%2fCSDE59766.2023.10487677&partnerID=40&md5=9ea374e1fef25598abf12d7636054d89},
doi = {10.1109/CSDE59766.2023.10487677},
isbn = {979-835034107-2 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Proc. IEEE Asia-Pacific Conf. Comput. Sci. Data Eng., CSDE},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Virtual interviews are an effective way to respond quickly to the changing trends of our time and adapt flexibly to the hiring processes of various organizations. Through this method, applicants have the opportunity to practice their interview skills and receive feedback, greatly aiding their job preparation. Additionally, experiencing a virtual interview environment that is similar to an actual one enables them to adapt more easily to a variety of new interview situations. This paper delves deeply into the virtual interview environment implemented by combining cutting-edge metaverse technology and generative AI. Specifically, it focuses on creating an environment utilizing realistic Diffusion models to generate interviewers, enabling the provision of scenarios that are similar to actual interviews. © 2023 IEEE.},
keywords = {Changing trends, Cutting edges, Diffusion, Diffusion Model, Generative AI, Hiring process, Interview skills, It focus, Metaverse, Metaverses, Unity, Virtual Interview, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}