AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Casas, L.; Mitchell, K.
Structured Teaching Prompt Articulation for Generative-AI Role Embodiment with Augmented Mirror Video Displays Proceedings Article
In: S.N., Spencer (Ed.): Proc.: VRCAI - ACM SIGGRAPH Int. Conf. Virtual-Reality Contin. Appl. Ind., Association for Computing Machinery, Inc, 2025, ISBN: 979-840071348-4 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Computer interaction, Contrastive Learning, Cultural icon, Experiential learning, Generative adversarial networks, Generative AI, human-computer interaction, Immersive, Pedagogical practices, Role-based, Teachers', Teaching, Video display, Virtual environments, Virtual Reality
@inproceedings{casas_structured_2025,
title = {Structured Teaching Prompt Articulation for Generative-AI Role Embodiment with Augmented Mirror Video Displays},
author = {L. Casas and K. Mitchell},
editor = {Spencer S.N.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217997060&doi=10.1145%2f3703619.3706049&partnerID=40&md5=7141c5dac7882232c6ee8e0bef0ba84e},
doi = {10.1145/3703619.3706049},
isbn = {979-840071348-4 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc.: VRCAI - ACM SIGGRAPH Int. Conf. Virtual-Reality Contin. Appl. Ind.},
publisher = {Association for Computing Machinery, Inc},
abstract = {We present a classroom enhanced with augmented reality video display in which students adopt snapshots of their corresponding virtual personas according to their teacher's live articulated spoken educational theme, linearly, such as historical figures, famous scientists, cultural icons, and laterally according to archetypal categories such as world dance styles. We define a structure of generative AI prompt guidance to assist teachers with focused specified visual role embodiment stylization. By leveraging role-based immersive embodiment, our proposed approach enriches pedagogical practices that prioritize experiential learning. © 2024 ACM.},
keywords = {Artificial intelligence, Augmented Reality, Computer interaction, Contrastive Learning, Cultural icon, Experiential learning, Generative adversarial networks, Generative AI, human-computer interaction, Immersive, Pedagogical practices, Role-based, Teachers', Teaching, Video display, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Chen, J.; Wu, X.; Lan, T.; Li, B.
LLMER: Crafting Interactive Extended Reality Worlds with JSON Data Generated by Large Language Models Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2715–2724, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: % reductions, 3D modeling, algorithm, Algorithms, Augmented Reality, Coding errors, Computer graphics, Computer interaction, computer interface, Computer simulation languages, Extended reality, generative artificial intelligence, human, Human users, human-computer interaction, Humans, Imaging, Immersive, Language, Language Model, Large language model, large language models, Metadata, Natural Language Processing, Natural language processing systems, Natural languages, procedures, Script generation, Spatio-temporal data, Three dimensional computer graphics, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Virtual Reality
@article{chen_llmer_2025,
title = {LLMER: Crafting Interactive Extended Reality Worlds with JSON Data Generated by Large Language Models},
author = {J. Chen and X. Wu and T. Lan and B. Li},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003825793&doi=10.1109%2fTVCG.2025.3549549&partnerID=40&md5=da4681d0714548e3a7e0c8c3295d2348},
doi = {10.1109/TVCG.2025.3549549},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2715–2724},
abstract = {The integration of Large Language Models (LLMs) like GPT-4 with Extended Reality (XR) technologies offers the potential to build truly immersive XR environments that interact with human users through natural language, e.g., generating and animating 3D scenes from audio inputs. However, the complexity of XR environments makes it difficult to accurately extract relevant contextual data and scene/object parameters from an overwhelming volume of XR artifacts. It leads to not only increased costs with pay-per-use models, but also elevated levels of generation errors. Moreover, existing approaches focusing on coding script generation are often prone to generation errors, resulting in flawed or invalid scripts, application crashes, and ultimately a degraded user experience. To overcome these challenges, we introduce LLMER, a novel framework that creates interactive XR worlds using JSON data generated by LLMs. Unlike prior approaches focusing on coding script generation, LLMER translates natural language inputs into JSON data, significantly reducing the likelihood of application crashes and processing latency. It employs a multi-stage strategy to supply only the essential contextual information adapted to the user's request and features multiple modules designed for various XR tasks. Our preliminary user study reveals the effectiveness of the proposed system, with over 80% reduction in consumed tokens and around 60% reduction in task completion time compared to state-of-the-art approaches. The analysis of users' feedback also illuminates a series of directions for further optimization. © 1995-2012 IEEE.},
keywords = {% reductions, 3D modeling, algorithm, Algorithms, Augmented Reality, Coding errors, Computer graphics, Computer interaction, computer interface, Computer simulation languages, Extended reality, generative artificial intelligence, human, Human users, human-computer interaction, Humans, Imaging, Immersive, Language, Language Model, Large language model, large language models, Metadata, Natural Language Processing, Natural language processing systems, Natural languages, procedures, Script generation, Spatio-temporal data, Three dimensional computer graphics, Three-Dimensional, three-dimensional imaging, User-Computer Interface, Virtual Reality},
pubstate = {published},
tppubtype = {article}
}
Leininger, P.; Weber, C. J.; Rothe, S.
Understanding Creative Potential and Use Cases of AI-Generated Environments for Virtual Film Productions: Insights from Industry Professionals Proceedings Article
In: IMX - Proc. ACM Int. Conf. Interact. Media Experiences, pp. 60–78, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071391-0 (ISBN).
Abstract | Links | BibTeX | Tags: 3-D environments, 3D reconstruction, 3D Scene Reconstruction, 3d scenes reconstruction, AI-generated 3d environment, AI-Generated 3D Environments, Computer interaction, Creative Collaboration, Creatives, Digital content creation, Digital Content Creation., Filmmaking workflow, Filmmaking Workflows, Gaussian distribution, Gaussian Splatting, Gaussians, Generative AI, Graphical user interface, Graphical User Interface (GUI), Graphical user interfaces, Human computer interaction, human-computer interaction, Human-Computer Interaction (HCI), Immersive, Immersive Storytelling, Interactive computer graphics, Interactive computer systems, Interactive media, Mesh generation, Previsualization, Real-Time Rendering, Splatting, Three dimensional computer graphics, Virtual production, Virtual Production (VP), Virtual Reality, Work-flows
@inproceedings{leininger_understanding_2025,
title = {Understanding Creative Potential and Use Cases of AI-Generated Environments for Virtual Film Productions: Insights from Industry Professionals},
author = {P. Leininger and C. J. Weber and S. Rothe},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007976841&doi=10.1145%2f3706370.3727853&partnerID=40&md5=0d4cf7a2398d12d04e4f0ab182474a10},
doi = {10.1145/3706370.3727853},
isbn = {979-840071391-0 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IMX - Proc. ACM Int. Conf. Interact. Media Experiences},
pages = {60–78},
publisher = {Association for Computing Machinery, Inc},
abstract = {Virtual production (VP) is transforming filmmaking by integrating real-time digital elements with live-action footage, offering new creative possibilities and streamlined workflows. While industry experts recognize AI's potential to revolutionize VP, its practical applications and value across different production phases and user groups remain underexplored. Building on initial research into generative and data-driven approaches, this paper presents the first systematic pilot study evaluating three types of AI-generated 3D environments - Depth Mesh, 360° Panoramic Meshes, and Gaussian Splatting - through the participation of 15 filmmaking professionals from diverse roles. Unlike commonly used 2D AI-generated visuals, our approach introduces navigable 3D environments that offer greater control and flexibility, aligning more closely with established VP workflows. Through expert interviews and literature research, we developed evaluation criteria to assess their usefulness beyond concept development, extending to previsualization, scene exploration, and interdisciplinary collaboration. Our findings indicate that different environments cater to distinct production needs, from early ideation to detailed visualization. Gaussian Splatting proved effective for high-fidelity previsualization, while 360° Panoramic Meshes excelled in rapid concept ideation. Despite their promise, challenges such as limited interactivity and customization highlight areas for improvement. Our prototype, EnVisualAIzer, built in Unreal Engine 5, provides an accessible platform for diverse filmmakers to engage with AI-generated environments, fostering a more inclusive production process. By lowering technical barriers, these environments have the potential to make advanced VP tools more widely available. This study offers valuable insights into the evolving role of AI in VP and sets the stage for future research and development. © 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.},
keywords = {3-D environments, 3D reconstruction, 3D Scene Reconstruction, 3d scenes reconstruction, AI-generated 3d environment, AI-Generated 3D Environments, Computer interaction, Creative Collaboration, Creatives, Digital content creation, Digital Content Creation., Filmmaking workflow, Filmmaking Workflows, Gaussian distribution, Gaussian Splatting, Gaussians, Generative AI, Graphical user interface, Graphical User Interface (GUI), Graphical user interfaces, Human computer interaction, human-computer interaction, Human-Computer Interaction (HCI), Immersive, Immersive Storytelling, Interactive computer graphics, Interactive computer systems, Interactive media, Mesh generation, Previsualization, Real-Time Rendering, Splatting, Three dimensional computer graphics, Virtual production, Virtual Production (VP), Virtual Reality, Work-flows},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Chheang, V.; Sharmin, S.; Marquez-Hernandez, R.; Patel, M.; Rajasekaran, D.; Caulfield, G.; Kiafar, B.; Li, J.; Kullu, P.; Barmaki, R. L.
Towards Anatomy Education with Generative AI-based Virtual Assistants in Immersive Virtual Reality Environments Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 21–30, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835037202-1 (ISBN).
Abstract | Links | BibTeX | Tags: 3-D visualization systems, Anatomy education, Anatomy educations, Cognitive complexity, E-Learning, Embodied virtual assistant, Embodied virtual assistants, Generative AI, generative artificial intelligence, Human computer interaction, human-computer interaction, Immersive virtual reality, Interactive 3d visualizations, Knowledge Management, Medical education, Three dimensional computer graphics, Verbal communications, Virtual assistants, Virtual Reality, Virtual-reality environment
@inproceedings{chheang_towards_2024,
title = {Towards Anatomy Education with Generative AI-based Virtual Assistants in Immersive Virtual Reality Environments},
author = {V. Chheang and S. Sharmin and R. Marquez-Hernandez and M. Patel and D. Rajasekaran and G. Caulfield and B. Kiafar and J. Li and P. Kullu and R. L. Barmaki},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187216893&doi=10.1109%2fAIxVR59861.2024.00011&partnerID=40&md5=33e8744309add5fe400f4f341326505f},
doi = {10.1109/AIxVR59861.2024.00011},
isbn = {979-835037202-1 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {21–30},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Virtual reality (VR) and interactive 3D visualization systems have enhanced educational experiences and environments, particularly in complicated subjects such as anatomy education. VR-based systems surpass the potential limitations of traditional training approaches in facilitating interactive engagement among students. However, research on embodied virtual assistants that leverage generative artificial intelligence (AI) and verbal communication in the anatomy education context is underrepresented. In this work, we introduce a VR environment with a generative AI-embodied virtual assistant to support participants in responding to varying cognitive complexity anatomy questions and enable verbal communication. We assessed the technical efficacy and usability of the proposed environment in a pilot user study with 16 participants. We conducted a within-subject design for virtual assistant configuration (avatar- and screen-based), with two levels of cognitive complexity (knowledge- and analysis-based). The results reveal a significant difference in the scores obtained from knowledge- and analysis-based questions in relation to avatar configuration. Moreover, results provide insights into usability, cognitive task load, and the sense of presence in the proposed virtual assistant configurations. Our environment and results of the pilot study offer potential benefits and future research directions beyond medical education, using generative AI and embodied virtual agents as customized virtual conversational assistants. © 2024 IEEE.},
keywords = {3-D visualization systems, Anatomy education, Anatomy educations, Cognitive complexity, E-Learning, Embodied virtual assistant, Embodied virtual assistants, Generative AI, generative artificial intelligence, Human computer interaction, human-computer interaction, Immersive virtual reality, Interactive 3d visualizations, Knowledge Management, Medical education, Three dimensional computer graphics, Verbal communications, Virtual assistants, Virtual Reality, Virtual-reality environment},
pubstate = {published},
tppubtype = {inproceedings}
}
Geetha, S.; Aditya, G.; Reddy, M. Chetan; Nischith, G.
Human Interaction in Virtual and Mixed Reality Through Hand Tracking Proceedings Article
In: Proc. CONECCT - IEEE Int. Conf. Electron., Comput. Commun. Technol., Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835038592-2 (ISBN).
Abstract | Links | BibTeX | Tags: Computer interaction, Computer simulation languages, Daily lives, Digital elevation model, Hand gesture, hand tracking, Hand-tracking, human-computer interaction, Humaninteraction, Interaction dynamics, Mixed reality, Unity, User friendly interface, User interfaces, Virtual environments, Virtual Reality, Virtual spaces
@inproceedings{geetha_human_2024,
title = {Human Interaction in Virtual and Mixed Reality Through Hand Tracking},
author = {S. Geetha and G. Aditya and M. Chetan Reddy and G. Nischith},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205768661&doi=10.1109%2fCONECCT62155.2024.10677239&partnerID=40&md5=173e590ca9a1e30b760d05af562f311a},
doi = {10.1109/CONECCT62155.2024.10677239},
isbn = {979-835038592-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. CONECCT - IEEE Int. Conf. Electron., Comput. Commun. Technol.},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {This paper explores the potential and possibilities of hand tracking in virtual reality (VR) and mixed reality (MR), focusing on its role in human interaction dynamics. An application was designed in Unity leveraging the XR Interaction toolkit, within which various items across three important domains: daily life, education, and recreation, were crafted to demonstrate the versatility of hand tracking along with hand gesture-based shortcuts for interaction. Integration of elements in MR ensures that users can seamlessly enjoy virtual experiences while remaining connected to their physical surroundings. Precise hand tracking enables effortless interaction with the virtual space, enhancing presence and control with a user-friendly interface. Additionally, the paper explores the effectiveness of integrating hand tracking into education and training scenarios. A computer assembly simulation was created to demonstrate this, featuring component inspection and zoom capabilities along with a large language model (LLM) integrated with hand gestures to provide for interaction capabilities. © 2024 IEEE.},
keywords = {Computer interaction, Computer simulation languages, Daily lives, Digital elevation model, Hand gesture, hand tracking, Hand-tracking, human-computer interaction, Humaninteraction, Interaction dynamics, Mixed reality, Unity, User friendly interface, User interfaces, Virtual environments, Virtual Reality, Virtual spaces},
pubstate = {published},
tppubtype = {inproceedings}
}