AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2024
Gao, H.; Huai, H.; Yildiz-Degirmenci, S.; Bannert, M.; Kasneci, E.
DataliVR: Transformation of Data Literacy Education through Virtual Reality with ChatGPT-Powered Enhancements Proceedings Article
In: U., Eck; M., Sra; J., Stefanucci; M., Sugimoto; M., Tatzgern; I., Williams (Ed.): Proc. - IEEE Int. Symp. Mixed Augment. Real., ISMAR, pp. 120–129, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833151647-5 (ISBN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Chatbots, ChatGPT, Contrastive Learning, Data driven, Data literacy, Digital transformation, Federated learning, Immersive learning, Language Model, Large language model, Learning experiences, Learning outcome, LLMs, Virtual environments, Virtual Reality
@inproceedings{gao_datalivr_2024,
title = {DataliVR: Transformation of Data Literacy Education through Virtual Reality with ChatGPT-Powered Enhancements},
author = {H. Gao and H. Huai and S. Yildiz-Degirmenci and M. Bannert and E. Kasneci},
editor = {Eck U. and Sra M. and Stefanucci J. and Sugimoto M. and Tatzgern M. and Williams I.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213525613&doi=10.1109%2fISMAR62088.2024.00026&partnerID=40&md5=abdeba7ecfecc8b1d715d633a29bd11d},
doi = {10.1109/ISMAR62088.2024.00026},
isbn = {979-833151647-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Symp. Mixed Augment. Real., ISMAR},
pages = {120–129},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Data literacy is essential in today's data-driven world, emphasizing individuals' abilities to effectively manage data and extract meaningful insights. However, traditional classroom-based educational approaches often struggle to fully address the multifaceted nature of data literacy. As education undergoes digital transformation, innovative technologies such as Virtual Reality (VR) offer promising avenues for immersive and engaging learning experiences. This paper introduces DataliVR, a pioneering VR application aimed at enhancing the data literacy skills of university students within a contextual and gamified virtual learning environment. By integrating Large Language Models (LLMs) like ChatGPT as a conversational artificial intelligence (AI) chatbot embodied within a virtual avatar, DataliVR provides personalized learning assistance, enriching user learning experiences. Our study employed an experimental approach, with chatbot availability as the independent variable, analyzing learning experiences and outcomes as dependent variables with a sample of thirty participants. Our approach underscores the effectiveness and user-friendliness of ChatGPT-powered DataliVR in fostering data literacy skills. Moreover, our study examines the impact of the ChatGPT-based AI chatbot on users' learning, revealing significant effects on both learning experiences and outcomes. Our study presents a robust tool for fostering data literacy skills, contributing significantly to the digital advancement of data literacy education through cutting-edge VR and AI technologies. Moreover, our research provides valuable insights and implications for future research endeavors aiming to integrate LLMs (e.g., ChatGPT) into educational VR platforms. © 2024 IEEE.},
keywords = {Adversarial machine learning, Chatbots, ChatGPT, Contrastive Learning, Data driven, Data literacy, Digital transformation, Federated learning, Immersive learning, Language Model, Large language model, Learning experiences, Learning outcome, LLMs, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Geurts, E.; Warson, D.; Ruiz, G. Rovelo
Boosting Motivation in Sports with Data-Driven Visualizations in VR Proceedings Article
In: ACM Int. Conf. Proc. Ser., Association for Computing Machinery, 2024, ISBN: 979-840071764-2 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Asynchronoi social interaction, Asynchronous social interaction, Cycling, Data driven, Dynamics, Extended reality, Group dynamics, Language Model, Large language model, large language models, Motivation, Natural language processing systems, Real-world, Real-world data, Social interactions, Sports, User interface, User interfaces, Virtual Reality, Visualization, Visualizations
@inproceedings{geurts_boosting_2024,
title = {Boosting Motivation in Sports with Data-Driven Visualizations in VR},
author = {E. Geurts and D. Warson and G. Rovelo Ruiz},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195387493&doi=10.1145%2f3656650.3656669&partnerID=40&md5=ec69e7abe61e572a94261ad6bbfed11c},
doi = {10.1145/3656650.3656669},
isbn = {979-840071764-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {ACM Int. Conf. Proc. Ser.},
publisher = {Association for Computing Machinery},
abstract = {In recent years, the integration of Artificial Intelligence (AI) has sparked revolutionary progress across diverse domains, with sports applications being no exception. At the same time, using real-world data sources, such as GPS, weather, and traffic data, offers opportunities to improve the overall user engagement and effectiveness of such applications. Despite the substantial advancements, including proven success in mobile applications, there remains an untapped potential in leveraging these technologies to boost motivation and enhance social group dynamics in Virtual Reality (VR) sports solutions. Our innovative approach focuses on harnessing the power of AI and real-world data to facilitate the design of such VR systems. To validate our methodology, we conducted an exploratory study involving 18 participants, evaluating our approach within the context of indoor VR cycling. By incorporating GPX files and omnidirectional video (real-world data), we recreated a lifelike cycling environment in which users can compete with simulated cyclists navigating a chosen (real-world) route. Considering the user's performance and interactions with other cyclists, our system employs AI-driven natural language processing tools to generate encouraging and competitive messages automatically. The outcome of our study reveals a positive impact on motivation, competition dynamics, and the perceived sense of group dynamics when using real performance data alongside automatically generated motivational messages. This underscores the potential of AI-driven enhancements in user interfaces to not only optimize performance but also foster a more engaging and supportive sports environment. © 2024 ACM.},
keywords = {Artificial intelligence, Asynchronoi social interaction, Asynchronous social interaction, Cycling, Data driven, Dynamics, Extended reality, Group dynamics, Language Model, Large language model, large language models, Motivation, Natural language processing systems, Real-world, Real-world data, Social interactions, Sports, User interface, User interfaces, Virtual Reality, Visualization, Visualizations},
pubstate = {published},
tppubtype = {inproceedings}
}