AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Banafa, A.
Artificial intelligence in action: Real-world applications and innovations Book
River Publishers, 2025, ISBN: 978-877004619-0 (ISBN); 978-877004620-6 (ISBN).
Abstract | Links | BibTeX | Tags: 5G, Affective Computing, AGI, AI, AI alignments, AI Ethics, AI hallucinations, AI hype, AI models, Alexa, ANI, ASI, Augmented Reality, Autoencoders, Autonomic computing, Autonomous Cars, Autoregressive models, Big Data, Big Data Analytics, Bitcoin, Blockchain, C3PO, Casual AI, Causal reasoning, ChatGPT, Cloud computing, Collective AI, Compression engines, Computer vision, Conditional Automation, Convolutional neural networks (CNNs), Cryptocurrency, Cybersecurity, Deceptive AI, Deep learning, Digital transformation, Driver Assistance, Driverless Cars, Drones, Elon Musk, Entanglement, Environment and sustainability, Ethereum, Explainable AI, Facebook, Facial Recognition, Feedforward. Neural Networks, Fog Computing, Full Automation, Future of AI, General AI, Generative Adversarial Networks (GANs), Generative AI, Google, Green AI, High Automation, Hybrid Blockchain, IEEE, Industrial Internet of Things (IIoT), Internet of things (IoT), Jarvis, Java, JavaScript, Long Short-Term Memory Networks, LTE, machine learning, Microsoft, MultiModal AI, Narrow AI, Natural disasters, Natural Language Generation (NLG), Natural Language Processing (NLP), NetFlix, Network Security, Neural Networks, Nuclear, Nuclear AI, NYTimes, Objective-driven AI, Open Source, Partial Automation, PayPal, Perfect AI, Private Blockchain, Private Cloud Computing, Programming languages, Python, Quantum Communications, Quantum Computing, Quantum Cryptography, Quantum internet, Quantum Machine Learning (QML), R2D2, Reactive machines. limited memory, Recurrent Neural Networks, Responsible AI, Robots, Sci-Fi movies, Self-Aware, Semiconductorâ??s, Sensate AI, Siri, Small Data, Smart Contracts. Hybrid Cloud Computing, Smart Devices, Sovereign AI, Super AI, Superposition, TensorFlow, Theory of Mind, Thick Data, Twitter, Variational Autoencoders (VAEs), Virtual Reality, Voice user interface (VUI), Wearable computing devices (WCD), Wearable Technology, Wi-Fi, XAI, Zero-Trust Model
@book{banafa_artificial_2025,
title = {Artificial intelligence in action: Real-world applications and innovations},
author = {A. Banafa},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000403587&partnerID=40&md5=4b0d94be48194a942b22bef63f36d3bf},
isbn = {978-877004619-0 (ISBN); 978-877004620-6 (ISBN)},
year = {2025},
date = {2025-01-01},
publisher = {River Publishers},
series = {Artificial Intelligence in Action: Real-World Applications and Innovations},
abstract = {This comprehensive book dives deep into the current landscape of AI, exploring its fundamental principles, development challenges, potential risks, and the cutting-edge breakthroughs that are propelling it forward. Artificial intelligence (AI) is rapidly transforming industries and societies worldwide through groundbreaking innovations and real-world applications. Starting with the core concepts, the book examines the various types of AI systems, generative AI models, and the complexities of machine learning. It delves into the programming languages driving AI development, data pipelines, model creation and deployment processes, while shedding light on issues like AI hallucinations and the intricate path of machine unlearning. The book then showcases the remarkable real-world applications of AI across diverse domains. From preventing job displacement and promoting environmental sustainability, to enhancing disaster response, drone technology, and even nuclear energy innovation, it highlights how AI is tackling complex challenges and driving positive change. The book also explores the double-edged nature of AI, recognizing its tremendous potential while cautioning about the risks of misuse, unintended consequences, and the urgent need for responsible development practices. It examines the intersection of AI and fields like operating system design, warfare, and semiconductor technology, underscoring the wide-ranging implications of this transformative force. As the quest for artificial general intelligence (AGI) and superintelligent AI systems intensifies, the book delves into cutting-edge research, emerging trends, and the pursuit of multimodal, explainable, and causally aware AI systems. It explores the symbiotic relationship between AI and human creativity, the rise of user-friendly "casual AI," and the potential of AI to tackle open-ended tasks. This is an essential guide for understanding the profound impact of AI on our world today and its potential to shape our future. From the frontiers of innovation to the challenges of responsible development, this book offers a comprehensive and insightful exploration of the remarkable real-world applications and innovations driving the AI revolution. © 2025 River Publishers. All rights reserved.},
keywords = {5G, Affective Computing, AGI, AI, AI alignments, AI Ethics, AI hallucinations, AI hype, AI models, Alexa, ANI, ASI, Augmented Reality, Autoencoders, Autonomic computing, Autonomous Cars, Autoregressive models, Big Data, Big Data Analytics, Bitcoin, Blockchain, C3PO, Casual AI, Causal reasoning, ChatGPT, Cloud computing, Collective AI, Compression engines, Computer vision, Conditional Automation, Convolutional neural networks (CNNs), Cryptocurrency, Cybersecurity, Deceptive AI, Deep learning, Digital transformation, Driver Assistance, Driverless Cars, Drones, Elon Musk, Entanglement, Environment and sustainability, Ethereum, Explainable AI, Facebook, Facial Recognition, Feedforward. Neural Networks, Fog Computing, Full Automation, Future of AI, General AI, Generative Adversarial Networks (GANs), Generative AI, Google, Green AI, High Automation, Hybrid Blockchain, IEEE, Industrial Internet of Things (IIoT), Internet of things (IoT), Jarvis, Java, JavaScript, Long Short-Term Memory Networks, LTE, machine learning, Microsoft, MultiModal AI, Narrow AI, Natural disasters, Natural Language Generation (NLG), Natural Language Processing (NLP), NetFlix, Network Security, Neural Networks, Nuclear, Nuclear AI, NYTimes, Objective-driven AI, Open Source, Partial Automation, PayPal, Perfect AI, Private Blockchain, Private Cloud Computing, Programming languages, Python, Quantum Communications, Quantum Computing, Quantum Cryptography, Quantum internet, Quantum Machine Learning (QML), R2D2, Reactive machines. limited memory, Recurrent Neural Networks, Responsible AI, Robots, Sci-Fi movies, Self-Aware, Semiconductorâ??s, Sensate AI, Siri, Small Data, Smart Contracts. Hybrid Cloud Computing, Smart Devices, Sovereign AI, Super AI, Superposition, TensorFlow, Theory of Mind, Thick Data, Twitter, Variational Autoencoders (VAEs), Virtual Reality, Voice user interface (VUI), Wearable computing devices (WCD), Wearable Technology, Wi-Fi, XAI, Zero-Trust Model},
pubstate = {published},
tppubtype = {book}
}
2024
Chen, Z.; Xie, A.; Wang, R.
An Edu-Metaverse Service Platform and its Experiments on Physical Education Class in PKU Proceedings Article
In: Proc. - IEEE Smart World Congr., SWC - IEEE Ubiquitous Intell. Comput., Auton. Trusted Comput., Digit. Twin, Metaverse, Priv. Comput. Data Secur., Scalable Comput. Commun., pp. 40–46, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833152086-1 (ISBN).
Abstract | Links | BibTeX | Tags: Digital era, Digital transformation, Edu-metaverse service, Edu-Metaverse services, Education digital transformation, Higher-quality education, Metaverse, Metaverses, PE class, Physical education, Service platforms
@inproceedings{chen_edu-metaverse_2024,
title = {An Edu-Metaverse Service Platform and its Experiments on Physical Education Class in PKU},
author = {Z. Chen and A. Xie and R. Wang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105002244347&doi=10.1109%2fSWC62898.2024.00036&partnerID=40&md5=6b0d4efaa0716068fc76518654381c8f},
doi = {10.1109/SWC62898.2024.00036},
isbn = {979-833152086-1 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Smart World Congr., SWC - IEEE Ubiquitous Intell. Comput., Auton. Trusted Comput., Digit. Twin, Metaverse, Priv. Comput. Data Secur., Scalable Comput. Commun.},
pages = {40–46},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {In the digital era, it is the only way for high-quality education to integrate the new generation of information technology with traditional education, promote the Digital transformation of education, and build a networked, digital, personalized, lifelong education system. This paper firstly introduces the concepts with Metaverse and its involvement toward Web3.0 as well as Generative AI. Then come with an Edu-Metaverse Service and its impact on the future education. Edu-Metaverse service would effectively support the 'student-centered' education model, and drive profound changes in education scenes, education content, roles and responsibilities, teaching evaluation and other aspects. Finally, a pilot practice combine Edu-Metaverse Service platform with Physical Education in Peking University was introduced and some issues were discussed. © 2024 IEEE.},
keywords = {Digital era, Digital transformation, Edu-metaverse service, Edu-Metaverse services, Education digital transformation, Higher-quality education, Metaverse, Metaverses, PE class, Physical education, Service platforms},
pubstate = {published},
tppubtype = {inproceedings}
}
Gao, H.; Huai, H.; Yildiz-Degirmenci, S.; Bannert, M.; Kasneci, E.
DataliVR: Transformation of Data Literacy Education through Virtual Reality with ChatGPT-Powered Enhancements Proceedings Article
In: U., Eck; M., Sra; J., Stefanucci; M., Sugimoto; M., Tatzgern; I., Williams (Ed.): Proc. - IEEE Int. Symp. Mixed Augment. Real., ISMAR, pp. 120–129, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-833151647-5 (ISBN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Chatbots, ChatGPT, Contrastive Learning, Data driven, Data literacy, Digital transformation, Federated learning, Immersive learning, Language Model, Large language model, Learning experiences, Learning outcome, LLMs, Virtual environments, Virtual Reality
@inproceedings{gao_datalivr_2024,
title = {DataliVR: Transformation of Data Literacy Education through Virtual Reality with ChatGPT-Powered Enhancements},
author = {H. Gao and H. Huai and S. Yildiz-Degirmenci and M. Bannert and E. Kasneci},
editor = {Eck U. and Sra M. and Stefanucci J. and Sugimoto M. and Tatzgern M. and Williams I.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213525613&doi=10.1109%2fISMAR62088.2024.00026&partnerID=40&md5=abdeba7ecfecc8b1d715d633a29bd11d},
doi = {10.1109/ISMAR62088.2024.00026},
isbn = {979-833151647-5 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. - IEEE Int. Symp. Mixed Augment. Real., ISMAR},
pages = {120–129},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Data literacy is essential in today's data-driven world, emphasizing individuals' abilities to effectively manage data and extract meaningful insights. However, traditional classroom-based educational approaches often struggle to fully address the multifaceted nature of data literacy. As education undergoes digital transformation, innovative technologies such as Virtual Reality (VR) offer promising avenues for immersive and engaging learning experiences. This paper introduces DataliVR, a pioneering VR application aimed at enhancing the data literacy skills of university students within a contextual and gamified virtual learning environment. By integrating Large Language Models (LLMs) like ChatGPT as a conversational artificial intelligence (AI) chatbot embodied within a virtual avatar, DataliVR provides personalized learning assistance, enriching user learning experiences. Our study employed an experimental approach, with chatbot availability as the independent variable, analyzing learning experiences and outcomes as dependent variables with a sample of thirty participants. Our approach underscores the effectiveness and user-friendliness of ChatGPT-powered DataliVR in fostering data literacy skills. Moreover, our study examines the impact of the ChatGPT-based AI chatbot on users' learning, revealing significant effects on both learning experiences and outcomes. Our study presents a robust tool for fostering data literacy skills, contributing significantly to the digital advancement of data literacy education through cutting-edge VR and AI technologies. Moreover, our research provides valuable insights and implications for future research endeavors aiming to integrate LLMs (e.g., ChatGPT) into educational VR platforms. © 2024 IEEE.},
keywords = {Adversarial machine learning, Chatbots, ChatGPT, Contrastive Learning, Data driven, Data literacy, Digital transformation, Federated learning, Immersive learning, Language Model, Large language model, Learning experiences, Learning outcome, LLMs, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Banafa, A.
Transformative AI: Responsible, Transparent, and Trustworthy AI Systems Book
River Publishers, 2023, ISBN: 978-877004018-1 (ISBN); 978-877004019-8 (ISBN).
Abstract | Links | BibTeX | Tags: 5G, Affective Computing, AI, AI Ethics, Alexa, Augment Reality, Autoencoders, Autonomous Cars, Autoregressive models, Big Data, Big Data Analytics, Bitcoin, Blockchain, C3PO, ChatGPT, Cloud computing, CNN, Computer vision, Conditional Automation, Convolutional Neural Networks, Cryptocurrency, Cybersecurity, Deep learning, Digital transformation, Driver Assistance, Driverless Cars, Entanglement, Ethereum, Explainable AI. Environment and sustainability, Facebook, Facial Recognition, Feedforward. Neural Networks, Fog Computing, Full Automation, General AI, Generative Adversarial Networks (GANs), Generative AI, Google, High Automation, Hybrid Blockchain, IEEE, IIoT, Industrial Internet of Things, Internet of Things, IoT, Jarvis, Long Short-Term Memory Networks, LTE, Machin Learning, Microsoft, Narrow AI, Natural Language Generation (NLG), Natural Language Processing (NLP), NetFlix, Network Security, Neural Networks, NYTimes, Open Source, Partial Automation, PayPal, Private Blockchain, Private Cloud Computing, Quantum Communications, Quantum Computing, Quantum Cryptography, Quantum Internet. Wearable Computing Devices (WCD). Autonomic Computing, Quantum Machine Learning (QML), R2D2, Reactive Machines . Limited Memory, Recurrent Neural Networks, Robots, Sci-Fi movies, Self-Aware, Siri, Small Data, Smart Contracts. Hybrid Cloud Computing, Smart Devices, Super AI, Superposition, Theory of Mind, Thick Data, Twitter, Variational Autoencoders (VAEs), Virtual Reality, Voice User Interface, VUI, Wearable Technology, Wi-Fi, Zero-Trust Model
@book{banafa_transformative_2023,
title = {Transformative AI: Responsible, Transparent, and Trustworthy AI Systems},
author = {A. Banafa},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180544759&partnerID=40&md5=c1fcd00f4b40e16156d9877185f66554},
isbn = {978-877004018-1 (ISBN); 978-877004019-8 (ISBN)},
year = {2023},
date = {2023-01-01},
publisher = {River Publishers},
series = {Transformative AI: Responsible, Transparent, and Trustworthy AI Systems},
abstract = {Transformative AI provides a comprehensive overview of the latest trends, challenges, applications, and opportunities in the field of Artificial Intelligence. The book covers the state of the art in AI research, including machine learning, natural language processing, computer vision, and robotics, and explores how these technologies are transforming various industries and domains, such as healthcare, finance, education, and entertainment. The book also addresses the challenges that come with the widespread adoption of AI, including ethical concerns, bias, and the impact on jobs and society. It provides insights into how to mitigate these challenges and how to design AI systems that are responsible, transparent, and trustworthy. The book offers a forward-looking perspective on the future of AI, exploring the emerging trends and applications that are likely to shape the next decade of AI innovation. It also provides practical guidance for businesses and individuals on how to leverage the power of AI to create new products, services, and opportunities. Overall, the book is an essential read for anyone who wants to stay ahead of the curve in the rapidly evolving field of Artificial Intelligence and understand the impact that this transformative technology will have on our lives in the coming years. © 2024 River Publishers. All rights reserved.},
keywords = {5G, Affective Computing, AI, AI Ethics, Alexa, Augment Reality, Autoencoders, Autonomous Cars, Autoregressive models, Big Data, Big Data Analytics, Bitcoin, Blockchain, C3PO, ChatGPT, Cloud computing, CNN, Computer vision, Conditional Automation, Convolutional Neural Networks, Cryptocurrency, Cybersecurity, Deep learning, Digital transformation, Driver Assistance, Driverless Cars, Entanglement, Ethereum, Explainable AI. Environment and sustainability, Facebook, Facial Recognition, Feedforward. Neural Networks, Fog Computing, Full Automation, General AI, Generative Adversarial Networks (GANs), Generative AI, Google, High Automation, Hybrid Blockchain, IEEE, IIoT, Industrial Internet of Things, Internet of Things, IoT, Jarvis, Long Short-Term Memory Networks, LTE, Machin Learning, Microsoft, Narrow AI, Natural Language Generation (NLG), Natural Language Processing (NLP), NetFlix, Network Security, Neural Networks, NYTimes, Open Source, Partial Automation, PayPal, Private Blockchain, Private Cloud Computing, Quantum Communications, Quantum Computing, Quantum Cryptography, Quantum Internet. Wearable Computing Devices (WCD). Autonomic Computing, Quantum Machine Learning (QML), R2D2, Reactive Machines . Limited Memory, Recurrent Neural Networks, Robots, Sci-Fi movies, Self-Aware, Siri, Small Data, Smart Contracts. Hybrid Cloud Computing, Smart Devices, Super AI, Superposition, Theory of Mind, Thick Data, Twitter, Variational Autoencoders (VAEs), Virtual Reality, Voice User Interface, VUI, Wearable Technology, Wi-Fi, Zero-Trust Model},
pubstate = {published},
tppubtype = {book}
}
Suryavanshi, D. P.; Kaveri, P. R.; Kadlag, P. S.
Advancing Digital Transformation in Indian Higher Education Institutions Proceedings Article
In: Intell. Comput. Control Eng. Bus. Syst., ICCEBS, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 979-835039458-0 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Data Analysis, Data collection, Data handling, Developing countries, Digital revolution, Digital transformation, E-Learning, Educational Institution, Educational institutions, Engineering education, High educations, Higher education institutions, Information analysis, Learning systems, Literature studies, Metadata, Primary data, Stakeholder, Stakeholders, Technology Adoption
@inproceedings{suryavanshi_advancing_2023,
title = {Advancing Digital Transformation in Indian Higher Education Institutions},
author = {D. P. Suryavanshi and P. R. Kaveri and P. S. Kadlag},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189153416&doi=10.1109%2fICCEBS58601.2023.10448947&partnerID=40&md5=8aff6f6dc84d011ed59e0f8cec9d9318},
doi = {10.1109/ICCEBS58601.2023.10448947},
isbn = {979-835039458-0 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Intell. Comput. Control Eng. Bus. Syst., ICCEBS},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {The paper focuses on advancing the use of Digital Transformation in Indian Higher Education Institutions, although India being a developing country it is important for the educational institution to practice transformation in various forms. The paper covers the detail literature study and conclude with various opinions that have been generated through primary data collection. The objective of the study is to identify the need of digital transformation for education environment by two major methods literature study and stakeholder data analysis. Technological expectation was also studied using questionnaires. The study also analyzed related studies that had been done in the past using the Vosviewer programme for the years 1980 to 2004 for Scopus dataset in order to understand the year-by-year publications, research articles, and book chapters in the subject of Digital Transformation in Higher Education. The majority of stakeholders concur that using digital transformation technologies like IoT, AI & ChatGpt, Generative AI, Augmented reality in higher education is essential for implementing NEP 2020 and successfully integrating digital technologies. The paper covers a detail discussion including literature review on various aspects of digital transformation in education institutes. It also covers opinion from various stakeholders to understand actual outcomes expected from the study which was conducted. The current study uses a mixed research methodology because the questionnaire includes both quantitative and qualitative questions. A sample of 40 respondents was collected, representing the four main stakeholders in education: students, faculty, businesspeople, and educationalists. The responses were analysed using the SPSS Percentage and mean. The newly adopted educational policy NEP 2020 encourages the use of technology and skill-based learning. The importance of technology in teaching and learning processes has been emphasized in numerous research papers in order to improve the teaching-learning process and its outcomes. The thorough assessment of the literature was carried out utilizing the VOS viewer to evaluate the pertinent studies and pinpoint any gaps. © 2023 IEEE.},
keywords = {Augmented Reality, Data Analysis, Data collection, Data handling, Developing countries, Digital revolution, Digital transformation, E-Learning, Educational Institution, Educational institutions, Engineering education, High educations, Higher education institutions, Information analysis, Learning systems, Literature studies, Metadata, Primary data, Stakeholder, Stakeholders, Technology Adoption},
pubstate = {published},
tppubtype = {inproceedings}
}