AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Dang, B.; Huynh, L.; Gul, F.; Rosé, C.; Järvelä, S.; Nguyen, A.
Human–AI collaborative learning in mixed reality: Examining the cognitive and socio-emotional interactions Journal Article
In: British Journal of Educational Technology, 2025, ISSN: 00071013 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence agent, Collaborative learning, Educational robots, Embodied agent, Emotional intelligence, Emotional interactions, Generative adversarial networks, generative artificial intelligence, Hierarchical clustering, Human–AI collaboration, Interaction pattern, Mixed reality, ordered network analysis, Ordered network analyze, Social behavior, Social interactions, Social psychology, Students, Supervised learning, Teaching
@article{dang_humanai_2025,
title = {Human–AI collaborative learning in mixed reality: Examining the cognitive and socio-emotional interactions},
author = {B. Dang and L. Huynh and F. Gul and C. Rosé and S. Järvelä and A. Nguyen},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007896240&doi=10.1111%2fbjet.13607&partnerID=40&md5=b58a641069461f8880d1ee0adcf42457},
doi = {10.1111/bjet.13607},
issn = {00071013 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {British Journal of Educational Technology},
abstract = {The rise of generative artificial intelligence (GAI), especially with multimodal large language models like GPT-4o, sparked transformative potential and challenges for learning and teaching. With potential as a cognitive offloading tool, GAI can enable learners to focus on higher-order thinking and creativity. Yet, this also raises questions about integration into traditional education due to the limited research on learners' interactions with GAI. Some studies with GAI focus on text-based human–AI interactions, while research on embodied GAI in immersive environments like mixed reality (MR) remains unexplored. To address this, this study investigates interaction dynamics between learners and embodied GAI agents in MR, examining cognitive and socio-emotional interactions during collaborative learning. We investigated the paired interactive patterns between a student and an embodied GAI agent in MR, based on data from 26 higher education students with 1317 recorded activities. Data were analysed using a multi-layered learning analytics approach, including quantitative content analysis, sequence analysis via hierarchical clustering and pattern analysis through ordered network analysis (ONA). Our findings identified two interaction patterns: type (1) AI-led Supported Exploratory Questioning (AISQ) and type (2) Learner-Initiated Inquiry (LII) group. Despite their distinction in characteristic, both types demonstrated comparable levels of socio-emotional engagement and exhibited meaningful cognitive engagement, surpassing the superficial content reproduction that can be observed in interactions with GPT models. This study contributes to the human–AI collaboration and learning studies, extending understanding to learning in MR environments and highlighting implications for designing AI-based educational tools. Practitioner notes What is already known about this topic Socio-emotional interactions are fundamental to cognitive processes and play a critical role in collaborative learning. Generative artificial intelligence (GAI) holds transformative potential for education but raises questions about how learners interact with such technology. Most existing research focuses on text-based interactions with GAI; there is limited empirical evidence on how embodied GAI agents within immersive environments like Mixed Reality (MR) influence the cognitive and socio-emotional interactions for learning and regulation. What this paper adds Provides first empirical insights into cognitive and socio-emotional interaction patterns between learners and embodied GAI agents in MR environments. Identifies two distinct interaction patterns: AISQ type (structured, guided, supportive) and LII type (inquiry-driven, exploratory, engaging), demonstrating how these patterns influence collaborative learning dynamics. Shows that both interaction types facilitate meaningful cognitive engagement, moving beyond superficial content reproduction commonly associated with GAI interactions. Implications for practice and/or policy Insights from the identified interaction patterns can inform the design of teaching strategies that effectively integrate embodied GAI agents to enhance both cognitive and socio-emotional engagement. Findings can guide the development of AI-based educational tools that capitalise on the capabilities of embodied GAI agents, supporting a balance between structured guidance and exploratory learning. Highlights the need for ethical considerations in adopting embodied GAI agents, particularly regarding the human-like realism of these agents and potential impacts on learner dependency and interaction norms. © 2025 The Author(s). British Journal of Educational Technology published by John Wiley & Sons Ltd on behalf of British Educational Research Association.},
keywords = {Artificial intelligence agent, Collaborative learning, Educational robots, Embodied agent, Emotional intelligence, Emotional interactions, Generative adversarial networks, generative artificial intelligence, Hierarchical clustering, Human–AI collaboration, Interaction pattern, Mixed reality, ordered network analysis, Ordered network analyze, Social behavior, Social interactions, Social psychology, Students, Supervised learning, Teaching},
pubstate = {published},
tppubtype = {article}
}
Lau, K. H. C.; Bozkir, E.; Gao, H.; Kasneci, E.
Evaluating Usability and Engagement of Large Language Models in Virtual Reality for Traditional Scottish Curling Proceedings Article
In: A., Del Bue; C., Canton; J., Pont-Tuset; T., Tommasi (Ed.): Lect. Notes Comput. Sci., pp. 177–195, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303191571-0 (ISBN).
Abstract | Links | BibTeX | Tags: Chatbots, Cultural heritages, Digital Cultural Heritage, Digital cultural heritages, Educational robots, Engineering education, Heritage education, Historic Preservation, Language Model, Large language model, large language models, Learning outcome, Model-based OPC, Usability engineering, User Engagement, Virtual Reality, Virtual-reality environment, Virtualization
@inproceedings{lau_evaluating_2025,
title = {Evaluating Usability and Engagement of Large Language Models in Virtual Reality for Traditional Scottish Curling},
author = {K. H. C. Lau and E. Bozkir and H. Gao and E. Kasneci},
editor = {Del Bue A. and Canton C. and Pont-Tuset J. and Tommasi T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105006905979&doi=10.1007%2f978-3-031-91572-7_11&partnerID=40&md5=8a81fb09ff54e57b9429660a8898149a},
doi = {10.1007/978-3-031-91572-7_11},
isbn = {03029743 (ISSN); 978-303191571-0 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15628 LNCS},
pages = {177–195},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {This paper explores the innovative application of Large Language Models (LLMs) in Virtual Reality (VR) environments to promote heritage education, focusing on traditional Scottish curling presented in the game “Scottish Bonspiel VR”. Our study compares the effectiveness of LLM-based chatbots with pre-defined scripted chatbots, evaluating key criteria such as usability, user engagement, and learning outcomes. The results show that LLM-based chatbots significantly improve interactivity and engagement, creating a more dynamic and immersive learning environment. This integration helps document and preserve cultural heritage and enhances dissemination processes, which are crucial for safeguarding intangible cultural heritage (ICH) amid environmental changes. Furthermore, the study highlights the potential of novel technologies in education to provide immersive experiences that foster a deeper appreciation of cultural heritage. These findings support the wider application of LLMs and VR in cultural education to address global challenges and promote sustainable practices to preserve and enhance cultural heritage. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {Chatbots, Cultural heritages, Digital Cultural Heritage, Digital cultural heritages, Educational robots, Engineering education, Heritage education, Historic Preservation, Language Model, Large language model, large language models, Learning outcome, Model-based OPC, Usability engineering, User Engagement, Virtual Reality, Virtual-reality environment, Virtualization},
pubstate = {published},
tppubtype = {inproceedings}
}
Gao, H.; Xie, Y.; Kasneci, E.
PerVRML: ChatGPT-Driven Personalized VR Environments for Machine Learning Education Journal Article
In: International Journal of Human-Computer Interaction, 2025, ISSN: 10447318 (ISSN).
Abstract | Links | BibTeX | Tags: Backpropagation, ChatGPT, Curricula, Educational robots, Immersive learning, Interactive learning, Language Model, Large language model, large language models, Learning mode, Machine learning education, Machine-learning, Personalized learning, Support vector machines, Teaching, Virtual Reality, Virtual-reality environment, Virtualization
@article{gao_pervrml_2025,
title = {PerVRML: ChatGPT-Driven Personalized VR Environments for Machine Learning Education},
author = {H. Gao and Y. Xie and E. Kasneci},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005776517&doi=10.1080%2f10447318.2025.2504188&partnerID=40&md5=c2c59be3d20d02c6df7750c2330c8f6d},
doi = {10.1080/10447318.2025.2504188},
issn = {10447318 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {International Journal of Human-Computer Interaction},
abstract = {The advent of large language models (LLMs) such as ChatGPT has demonstrated significant potential for advancing educational technologies. Recently, growing interest has emerged in integrating ChatGPT with virtual reality (VR) to provide interactive and dynamic learning environments. This study explores the effectiveness of ChatGTP-driven VR in facilitating machine learning education through PerVRML. PerVRML incorporates a ChatGPT-powered avatar that provides real-time assistance and uses LLMs to personalize learning paths based on various sensor data from VR. A between-subjects design was employed to compare two learning modes: personalized and non-personalized. Quantitative data were collected from assessments, user experience surveys, and interaction metrics. The results indicate that while both learning modes supported learning effectively, ChatGPT-powered personalization significantly improved learning outcomes and had distinct impacts on user feedback. These findings underscore the potential of ChatGPT-enhanced VR to deliver adaptive and personalized educational experiences. © 2025 Taylor & Francis Group, LLC.},
keywords = {Backpropagation, ChatGPT, Curricula, Educational robots, Immersive learning, Interactive learning, Language Model, Large language model, large language models, Learning mode, Machine learning education, Machine-learning, Personalized learning, Support vector machines, Teaching, Virtual Reality, Virtual-reality environment, Virtualization},
pubstate = {published},
tppubtype = {article}
}